Is this a multiple choice? Anyways I will just give you a written answer and hopefully it helps.
A: Helium is made up of two electrons held by electromagnetic force to two protons that are inside of a nucleus along with one or two neutrons.
Toothpaste is an abrasive that contains many things, but mainly phosphates.
Answer:
54.30 grams acetone
Explanation:
(0. 935 mol)*(58.08 g/mole) = 54.30 grams acetone
The formal charges of all nonhydrogen atoms are -1.
Solution:-
<u>O 7-4 = 3 O Double bond on one H 5-4 = 1</u>
O-Cl-O 6-7 = -1x4 = -4 N 5-4=1 H-N-H 1-1=0
O 3-4= -1 O O 6-7 = -1(2)=-2 H 1-0=+1
<u>6-6 = 0 1-2 = -1</u>
It will percentage its last valence electron thru a single bond to the terminal oxygen atom. This is in agreement with carbon and hydrogen atoms that each need to form 4 and 1 covalent bonds respectively. because the terminal oxygen atom best has a single covalent bond, it'll have a proper rate of -1.
According to the lewis structure of SO2, The critical atom is sulfur and it is bonded with 2 oxygen atoms thru a double bond. each oxygen atom acquires 2 lone pairs of electrons and the primary sulfur atom has 1 lone pair of electrons.
Learn more about Nonhydrogen atoms here:-brainly.com/question/2822744
#SPJ4
Answer:
False
Explanation:
False. The molecules of liquid are hold in the liquid state due to intermolecular forces or Van de Waals forces , without affecting the molecule itself and its atomic bonds (covalent bonds). When the temperature increases the kinetic energy of the molecules is higher , therefore they have more possibilities to escape from the attractive intermolecular forces and go to the gas state.
Note however that this is caused because the intermolecular forces are really weak compared to covalent bonds, therefore is easier to break the first one first and go to the gas state before any covalent bond breaks ( if it happens).
A temperature increase can increase vaporisation rate if any reaction is triggered that decomposes the liquid into more volatile compounds , but nevertheless, this effect is generally insignificant compared with the effect that temperature has in vaporisation due to Van der Waals forces.