1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
leva [86]
3 years ago
6

True or False? An equiangular triangle can never be scalene. A. True B. False

Mathematics
2 answers:
slavikrds [6]3 years ago
8 0
Its true because scalene doesn't have equal sides 
Lubov Fominskaja [6]3 years ago
8 0

Answer:

this is true :)))))))))))))))

Step-by-step explanation:


You might be interested in
-114=-5x-2(4x+18)<br> ????????
SVETLANKA909090 [29]

Primeiro multiplica o -2 com tudo que tem dentro do parenteses (chuveirinho)  -114 = -5x -2(4x+18)

-2 . 4x = -8x        +     -2 . 18 = -36        =   -8x-36


Agora soma os números com incógnitas (no caso x)

-114 = - 5x - 8x -36    


Joga a incógnita do outro, tornando positiva

-114 = -13x - 36            

13x -114 = -36


e o 114 do outro lado, ficando positiva também  

13x -114 = -36

13x  = - 36 + 114

13x = 78

x = 78 /13

x= 6


ESPERO TER AJUDADO :)


8 0
3 years ago
In 2017 the state University’s men’s basketball team finished the season ranked 34 out
Alex Ar [27]

Answer:

sorry I don't know the answer

8 0
3 years ago
PLEZ NEED HELP ASAP 24.455−18.246
Leviafan [203]

Answer:

The answer is 6.209

6 0
3 years ago
Read 2 more answers
PLEASE HELP! GIVING 20 POINTs
MakcuM [25]

Answer:

Box A-10

Box B-15

Box C-20

i think

5 0
3 years ago
Read 2 more answers
Separable differential equation <br> y’ln^2y+ysqrtx=0 y(0)=e
Maksim231197 [3]

By applying the theory of <em>separable ordinary differential</em> equations we conclude that the solution of the <em>differential</em> equation \frac{dy}{dx} \cdot (\ln y)^{2} + y\cdot \sqrt{x} = 0 with y(0) = e is y = e^{\sqrt [3]{-2\cdot x^{\frac{3}{2} }+1}}.

<h3>How to solve separable differential equation</h3>

In this question we must separate each variable on each side of the equivalence, integrate each side of the expression and find an <em>explicit</em> expression (y = f(x)) if possible.

\frac{dy}{dx} \cdot (\ln y)^{2} + y\cdot \sqrt{x} = 0

(\ln y)^{2}\,dy =  -y \cdot \sqrt{x}\, dx

-\frac{(\ln y)^{2}}{y}\, dy = \sqrt{x} \,dx

-\int {\frac{(\ln y)^{2}}{y} } \, dy = \int {\sqrt{x}} \, dx

If u = ㏑ y and du = dy/y, then:

-\int {u^{2}\,du } = \int {x^{\frac{1}{2} }} \, dx

-\frac{1}{3}\cdot u^{3} = \frac{2\cdot x^{\frac{3}{2} }}{3} + C

u^{3} = -2\cdot x^{\frac{3}{2} } + C

(\ln y)^{3} = - 2\cdot x^{\frac{3}{2} } + C

C = (\ln e)^{3}

C = 1

And finally we get the <em>explicit</em> expression:

\ln y = \sqrt [3]{-2\cdot x^{\frac{3}{2} }+ 1}

y = e^{\sqrt [3]{-2\cdot x^{\frac{3}{2} }+1}}

By applying the theory of <em>separable ordinary differential</em> equations we conclude that the solution of the <em>differential</em> equation \frac{dy}{dx} \cdot (\ln y)^{2} + y\cdot \sqrt{x} = 0 with y(0) = e is y = e^{\sqrt [3]{-2\cdot x^{\frac{3}{2} }+1}}.

To learn more on ordinary differential equations: brainly.com/question/14620493

#SPJ1

6 0
2 years ago
Other questions:
  • -4.2x + 31.5= -65.1<br><br>What is the value of X
    5·2 answers
  • PLEASE HELP. I WILL MARK BRAINLY !!!
    8·1 answer
  • What is 4 groups of 12
    7·2 answers
  • - 3(3s - 4) - 12 = - 3/6s + 1) - 4
    8·1 answer
  • Please answer the equation in the attachment.
    12·1 answer
  • Using the data below, determine the angle for the part of the pie chart the represents the people who prefer dogs?
    15·1 answer
  • Help me to do this question plz ​
    7·1 answer
  • 2. Which expression is equivalent to 2x2 + (4x - 6x2)+9 - (6x + 3)?
    14·1 answer
  • Mr parkers fourth-grade class is selling candles for a fundraiser each candle costs 7 dollars the class is hoping to raise 350 d
    14·2 answers
  • Solve for X <br> 7x=49 (brainliest)
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!