Answer:
1) multiplicative inverse of i = -i
2) Multiplicative inverse of i^2 = -1
3) Multiplicative inverse of i^3 = i
4) Multiplicative inverse of i^4 = 1
Step-by-step explanation:
We have to find multiplicative inverse of each of the following.
1) i
The multiplicative inverse is 1/i
if i is in the denominator we find their conjugate
So, multiplicative inverse of i = -i
2) i^2
The multiplicative inverse is 1/i^2
We know that i^2 = -1
1/-1 = -1
so, Multiplicative inverse of i^2 = -1
3) i^3
The multiplicative inverse is 1/i^3
We know that i^2 = -1
and i^3 = i.i^2
so, Multiplicative inverse of i^3 = i
4) i^4
The multiplicative inverse is 1/i^4
We know that i^2 = -1
and i^4 = i^2.i^2
so, Multiplicative inverse of i^4 = 1
Answer:
1. 21x⁴+3y-35x² + 41
2. -21x⁴-3y+6x² + x
Step-by-step explanation:
When adding and subtracting polynomials , you can use the distributive property to add or subtract the coefficients of like terms.
1. The polynomial is 21x⁴ + 3y -6x² + 34
To obtain polynomial 29x² -7 , we must subtract some polynomial from it.
Let that polynomial be k.
So, 21x⁴ + 3y -6x² + 34 - k = 29x² -7
k = 21x⁴ + 3y - 6x² +34 - 29x² +7 = 21x⁴ + 3y - 35x² + 41
2. To obtain a first degree polynomial, let that polynomial be x +34
So, 21x⁴ + 3y - 6x² + 34 + K = x + 34
K = x + 34 - 21x⁴ -3y + 6x² - 34
= -21x⁴ - 3y + 6x² + x
Yes but In the bigger group each person would have less