Answer:
- 8) 4 + 2q²/p² - 4r/p + r²/p²
- 9) (3/4, -9/4)
- 10) (3/8, 41/16)
Step-by-step explanation:
8. ============
Given
- α and β are roots of px² + qx + r = 0
The sum of the roots is α + β = -q/p, the product of then roots αβ = r/p
- (2 + α²)(2 + β²) =
- 4 + 2(α² + β²) + (αβ)² =
- 4 + 2((α + β)² -2αβ) + (αβ)² =
- 4 + 2((-q/p)² - 2r/p) + (r/p)² =
- 4 + 2q²/p² - 4r/p + r²/p²
------------------------------
9. ============
<u>Given function</u>
The minimum point is reached at vertex
<u>The vertex is:</u>
- x = -b/2a
- x = -(-3)/2*2 = 3/4
<u>The corresponding y-coordinate is:</u>
- y = 2(3/4)² - 3(3/4) - 1 = 9/8 - 9/4 - 1 = 1/8(9 - 18 - 9) = - 18/8 = - 9/4
<u>So the point is: </u>
---------------
10. ============
<u>Given function</u>
The maximum is reached at vertex
<u>The vertex is:</u>
- x = -b/2a
- x = -(-3)/2(-4) = -3/8
<u>The corresponding y-coordinate is:</u>
- y = 2 - 3(-3/8) -4(-3/8)² = 2 + 9/8 - 9/16 = 1/16(32 + 18 - 9) = 41/16
<u>So the maximum point is:</u>
Answer:
James will end up with his original t cars and half of (t+13) cars, so will have ...
... t + (t+13/2) = (3t +13)/2 . . . . cars James has after Paul's gift
Step-by-step explanation:
Answer: 11,544 pieces of candy are made per hour.
Step-by-step explanation:
Hi, to answer this question we have to analyze the information given:
- <em>Gallons of corn syrup used: 8
</em>
- <em>Pieces of candy produced: 1,776
</em>
- <em>gallons of corn syrup per hour: 52
</em>
If we apply proportions:
8 /1,776 = 52/x
Where x is the pieces of candy made per hour.
Solving
x = 52x1, 776 /8
x = 11,544
11,544 pieces of candy are made per hour.
Solution for x^2+5x=150 equation:
<span>Simplifying
x2 + 5x = 150
Reorder the terms:
5x + x2 = 150
Solving
5x + x2 = 150
Solving for variable 'x'.
Reorder the terms:
-150 + 5x + x2 = 150 + -150
Combine like terms: 150 + -150 = 0
-150 + 5x + x2 = 0
Factor a trinomial.
(-15 + -1x)(10 + -1x) = 0
Subproblem 1Set the factor '(-15 + -1x)' equal to zero and attempt to solve:
Simplifying
-15 + -1x = 0
Solving
-15 + -1x = 0
Move all terms containing x to the left, all other terms to the right.
Add '15' to each side of the equation.
-15 + 15 + -1x = 0 + 15
Combine like terms: -15 + 15 = 0
0 + -1x = 0 + 15
-1x = 0 + 15
Combine like terms: 0 + 15 = 15
-1x = 15
Divide each side by '-1'.
x = -15
Simplifying
x = -15
Subproblem 2Set the factor '(10 + -1x)' equal to zero and attempt to solve:
Simplifying
10 + -1x = 0
Solving
10 + -1x = 0
Move all terms containing x to the left, all other terms to the right.
Add '-10' to each side of the equation.
10 + -10 + -1x = 0 + -10
Combine like terms: 10 + -10 = 0
0 + -1x = 0 + -10
-1x = 0 + -10
Combine like terms: 0 + -10 = -10
-1x = -10
Divide each side by '-1'.
x = 10
Simplifying
x = 10Solutionx = {-15, 10}</span>