Given that <span>Line WX is congruent to Line XY and Line XZ bisects Angle WXY.
We prove that triangle WXZ is congruent to triangle YXZ as follows:
![\begin{tabular} {|c|c|} Statement&Reason\\[1ex] \overline{WX}\cong\overline{XY},\ \overline{XZ}\ bisects\ \angle WXY&Given\\ \angle WXY\cong\angle YXZ & Deifinition of an angle bisector\\ \overline{XZ}\cong\overline{ZX}&Refrexive Property of \cong\\ \triangle WXZ\cong\triangle YXZ&SAS \end{tabular}](https://tex.z-dn.net/?f=%5Cbegin%7Btabular%7D%0A%7B%7Cc%7Cc%7C%7D%0AStatement%26Reason%5C%5C%5B1ex%5D%0A%5Coverline%7BWX%7D%5Ccong%5Coverline%7BXY%7D%2C%5C%20%5Coverline%7BXZ%7D%5C%20bisects%5C%20%5Cangle%20WXY%26Given%5C%5C%0A%5Cangle%20WXY%5Ccong%5Cangle%20YXZ%20%26%20Deifinition%20of%20an%20angle%20bisector%5C%5C%0A%5Coverline%7BXZ%7D%5Ccong%5Coverline%7BZX%7D%26Refrexive%20Property%20of%20%5Ccong%5C%5C%0A%5Ctriangle%20WXZ%5Ccong%5Ctriangle%20YXZ%26SAS%0A%5Cend%7Btabular%7D)
</span>
Answer:
A function is shown where b is a real number. f(x)=x^2+bx+144 The minimum value of the function is 80. Create an equation for an equivalent function in the form f(x)=(x-h)^2+k.
Answer:
f(1)=-11
f(n)=f(n-1)+22
Step-by-step explanation:
Base equation:
f(n)=-11+22(n-1)
f(1)=-11+22(1-1)
f(1)=-11+0
f(1)=-11
f(n)=-33+22n
f(n-1)=-11+22(n-2)
f(n-1)=-55+22n
-33+22n=-55+22n+x
22n gets canceled out
-33=-55+x
-33+55=x
x=22
f(n)=f(n-1)+22
4.7 as a fraction would be 4 and 7/10 (7 over 10).
Answer:
no
Step-by-step explanation:
iT CANNOT BE A SOLUTION