Melting ice cream is a physical change because it is a phase change, the water in the ice cream gains thermal energy and the inter-molecular forces are overcome and the molecules move further apart forming a liquid. It is not a chemical change because no chemical reactions occurred.
If you mean the number of Significant Figures/Digits in 23.45, it would be 4. This is because every single non-zero digit is counted as a significant figure
Answer:
Elements that fall between those on the left and right sides of the periodic table
Explanation:
Transition metals:
These are present at the center of periodic table.
These are d-block elements.
They include the elements of group 3 to 12 in periodic table.
They have large charge to radius ratio.
They mostly form paramagnetic compounds.
They shoes more than one oxidation state.
They form colored compounds.
They all have high melting and boiling point.
They have high densities.
They form stable complexes.
The elements of f-block are also transition but they are called inner transition.These are consist of two series lanthanide and actinides.
Answer : The vapor pressure of bromine at
is 0.1448 atm.
Explanation :
The Clausius- Clapeyron equation is :

where,
= vapor pressure of bromine at
= ?
= vapor pressure of propane at normal boiling point = 1 atm
= temperature of propane = 
= normal boiling point of bromine = 
= heat of vaporization = 30.91 kJ/mole = 30910 J/mole
R = universal constant = 8.314 J/K.mole
Now put all the given values in the above formula, we get:


Hence, the vapor pressure of bromine at
is 0.1448 atm.
Answer:
0.9 mole of Fe(OH)3.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
Fe(NO3)3 + 3NaOH —> Fe(OH)3 + 3NaNO3
Now, we can determine the moles of iron (III) hydroxide formed from the reaction as follow:
From the balanced equation above,
3 moles of NaOH reacted to produce 1 mole of Fe(OH)3.
Therefore, 2.7 moles of NaOH will react to produce = 2.7/3 = 0.9 mole of Fe(OH)3.
Therefore, 0.9 mole of Fe(OH)3 is produced from the reaction.