Isotopes of an element will contain the same number of protons and electrons but will differ in the number of neutrons they contain. In other words, isotopes have the same atomic number because they are the same element but have a different atomic mass because they contain a different number of neutrons.
Tap water used for drinking is considered in the DIL calculations; true
The picture is not loading as it requires a sign in.
However, I can tell you how to solve this.
Answer:
<span>As the wavelength gets shorter (closer together), the frequency of the wave increases.
Explanation:
The relation between frequency and wavelength can be described by the help of velocity as follows:
velocity = frequency * wavelength
This means that:
frequency = velocity / wavelength
Noting this equation, we will find that:
The frequency and the wavelength are inversely proportional to each other. This means that as the frequency increases, the wavelength decreases and vice versa.
Now, examining the choices given, we can find that the only statement showing the inverse relation between frequency and wavelength is:
</span><span>As the wavelength gets shorter (closer together), the frequency of the wave increases.
Hope this helps :)
</span>
This problem is providing us with the molality of a solution of calcium iodide as 0.01 m. So the most likely van't Hoff factor is required and theoretically found to be 3 due to the following:
<h3>Van't Hoff factor:</h3>
In chemistry, the correct characterization of solutions also imply the identification of the ions it will release in aqueous solution. For that reason, the van't Hoff factor gives us an idea of this number, according to the formula the solute has got.
In such a way, for calcium iodide, we write its ionization equation as shown below:

Assuming it is able to ionize due to the low molality, because if it was higher, then it won't ionize. Hence, since we have three moles of ion products, one Ca²⁺ and two I⁻, we can conclude the van't Hoff factor would be 3, although calculations may lead to a different, yet close result.
Learn more about the van't Hoff factor: brainly.com/question/23764376
The question is incomplete. The complete question is :
Hydrogen is manufactured on an industrial scale by this sequence of reactions:


The net reaction is :

Write an equation that gives the overall equilibrium constant
in terms of the equilibrium constants
and
. If you need to include any physical constants, be sure you use their standard symbols, which you'll find in the ALEKS Calculator.
Solution :

...............(1)

...................(2)

![$K=\frac{[CO_2][H_2]^4}{[CH_4][H_2O]^2}$](https://tex.z-dn.net/?f=%24K%3D%5Cfrac%7B%5BCO_2%5D%5BH_2%5D%5E4%7D%7B%5BCH_4%5D%5BH_2O%5D%5E2%7D%24)
On multiplication of equation (1) and (2), we get
![$K_1 \times K_2=\frac{[CO][H_2]^3}{[CH_4][H_2O]} \times \frac{[CO_2][H_2]}{[CO][H_2O]}$](https://tex.z-dn.net/?f=%24K_1%20%5Ctimes%20K_2%3D%5Cfrac%7B%5BCO%5D%5BH_2%5D%5E3%7D%7B%5BCH_4%5D%5BH_2O%5D%7D%20%5Ctimes%20%5Cfrac%7B%5BCO_2%5D%5BH_2%5D%7D%7B%5BCO%5D%5BH_2O%5D%7D%24)
.................(4)
Comparing equation (3) and equation (4), we get
