Answer:
- <em>The molar mass of an element is the mass of </em><u>one mole of atoms of the element.</u>
Explanation:
<em>The molar mass of an element </em>is its atomic mass, i.e. the mass in grams of one mole of atoms of the element.
Remember 1 mol is approximately 6.022 × 10²³.
So, 1 mol of atoms is 6.022 × 10²³ atoms.
The molar mass is an average: it is the weighted average mass of the natural isotopes of the element, taking into account their relative abundance.
For example, the molar mass or atomic mass of carbon is 12,0107 g/mol, instead of 12.0000, becasue carbon exists in several forms (isotopes), and so the weighted average is not a whole number.
Answer
The particle theory is used to explain the properties of solids, liquids and gases. The strength of bonds (attractive forces) between particles is different in all three states.
Answer:
Frecuency = 5,83x10⁻⁷ Hz
Explanation:
The equation that connects wavelenght and frequency is given by:
λ = c/ν
λ=wavelenght (expressed in lenght´s units)
c= speed of light (3x10⁸ m/sec)
ν=frequency (expressed in units of time⁻¹ or Herzt)
In our case, λ=5,14x10⁻⁷ m , so replacing in our previous formula, this gives us the final result of ν (frequency for green light) of 5,83x10¹⁴ Hz (or Herzt)
Answer:
4,1,5,3,2 (from left to right)