Answer: true
Explanation: hope this helpes
Answer:
3.2 moles
Explanation:
First, we'll begin by writing a balanced equation for the Combustion of methane to produce carbon dioxide. This is illustrated below:
CH4 + 2O2 —> CO2 + 2H2O
From the balanced equation above,
1 mole of methane (CH4) reacted to produced 1 mole of carbon dioxide (CO2).
Therefore, 3.2 moles of methane (CH4) will react to produce 3.2 moles of carbon dioxide (CO2).
From the illustration above, 3.2 moles of methane is needed to produce 3.2 moles of carbon dioxide.
Answer:
13.85 kJ/°C
-14.89 kJ/g
Explanation:
<em>At constant volume, the heat of combustion of a particular compound, compound A, is − 3039.0 kJ/mol. When 1.697 g of compound A (molar mass = 101.67 g/mol) is burned in a bomb calorimeter, the temperature of the calorimeter (including its contents) rose by 3.661 °C. What is the heat capacity (calorimeter constant) of the calorimeter? </em>
<em />
The heat of combustion of A is − 3039.0 kJ/mol and its molar mass is 101.67 g/mol. The heat released by the combustion of 1.697g of A is:

According to the law of conservation of energy, the sum of the heat released by the combustion and the heat absorbed by the bomb calorimeter is zero.
Qcomb + Qcal = 0
Qcal = -Qcomb = -(-50.72 kJ) = 50.72 kJ
The heat capacity (C) of the calorimeter can be calculated using the following expression.
Qcal = C . ΔT
where,
ΔT is the change in the temperature
Qcal = C . ΔT
50.72 kJ = C . 3.661 °C
C = 13.85 kJ/°C
<em>Suppose a 3.767 g sample of a second compound, compound B, is combusted in the same calorimeter, and the temperature rises from 23.23°C to 27.28 ∘ C. What is the heat of combustion per gram of compound B?</em>
Qcomb = -Qcal = -C . ΔT = - (13.85 kJ/°C) . (27.28°C - 23.23°C) = -56.09 kJ
The heat of combustion per gram of B is:

<span>1 mole glucose gives 2 moles of ethanol
moles of glucose in 2.4 kg = 2400 / 180.18 = 13.320 moles
so moles of ethanol produced = 2* 13.32 = 26.64 moles
weight of ethanol 26.64 * 46.07
=1227.30 gm or 1.23 Kg</span>