Answer:
it goes to a solid to a liquid
Explanation:
When something is a solid the molecules are impact together and have a small sense of vibration. But as the solid melts away for example ice, the molecules become more loose forming into a liquid
1) Write the balaced chemical equation:
H2 + 2O2 → 2H2O
2) Infere the molar ratios:
1 mol H2 : 2 mol of water
3) Make the calculus as the direct proportion relation:
[2 mol H2O] / [1 mol H2] * 7 mol H2 = 14 mol H2
As you see you produce the double number of moles of H2O than number of moles of H2 used.
Answer: 14 moles
The equilibrium constant is 0.0022.
Explanation:
The values given in the problem is
ΔG° = 1.22 ×10⁵ J/mol
T = 2400 K.
R = 8.314 J mol⁻¹ K⁻¹
The Gibbs free energy should be minimum for a spontaneous reaction and equilibrium state of any reaction is spontaneous reaction. So on simplification, the thermodynamic properties of the equilibrium constant can be obtained as related to Gibbs free energy change at constant temperature.
The relation between Gibbs free energy change with equilibrium constant is ΔG° = -RT ln K
So, here K is the equilibrium constant. Now, substitute all the given values in the corresponding parameters of the above equation.
We get,
So, the equilibrium constant is 0.0022.
8. b
9. c
10.a
all of those can be determined by units