Answer:
They learned because they keeped studying they would never give up and if they found something new or interesting they may have just studied it more.
Explanation:
Answer:
THE EMPIRICAL FORMULA FOR THE UNKNOWN COMPOUND IS C7H9O
Explanation:
The empirical formula for the unknown compound can be obtained by following the processes below:
1 . Write out the percentage composition of the individual elements in the compound
C = 75.68 %
H = 8.80 %
O = 15.52 %
2. Divide the percentage composition by the atomic masses of the elements
C = 75 .68 / 12 = 6.3066
H = 8.80 / 1 = 8.8000
O = 15.52 / 16 = 0.9700
3. Divide the individual results by the lowest values
C = 6.3066 / 0.9700 = 6.5016
H = 8.8000 / 0.9700 = 9.0722
O = 0.9700 / 0.9700 = 1
4. Round up the values to the whole number
C = 7
H = 9
O = 1
5 Write out the empirical formula for the compound
C7H90
In conclusion, the empirical formula for the unknown compound is therefore C7H9O
Answer:
Yes, it does, although only physically and not chemically.
Explanation:
If a volume of gas is way spread out, it won't collide with the other gas particles as often, reducing pressure and temperature because they lose kinetic energy to their surroundings when they don't collide.
If it is compressed, it increases temperature and pressure because the gas particles collide with each other and the walls of the container way more often than if they had more space.
Hope this answers your question.
P.S.
Fun fact, gas particles are actually moving at 300-400 meters per second at room temperature, they only slow down to walking speed at very low temperatures, like 10 Kelvin