1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pashok25 [27]
4 years ago
12

A ladder leaning against a wall makes an angle of 45º with the ground. If the length of the ladder is 20 feet, find the approxim

ate distance of the foot of the ladder from the wall

Mathematics
2 answers:
MA_775_DIABLO [31]4 years ago
7 0
I used Pythagoras's theorem knowing that both sides of a right triangle with 45° angles have 2 equal sides and then the hypotenuse. I got 10(square root)2
tatyana61 [14]4 years ago
6 0

Answer:

Using Cosine ratio:

\cos \theta = \frac{\text{Adjacent side}}{\text{hypotenuse side}}

As per the statement:

A ladder leaning against a wall makes an angle of 45º with the ground.

⇒Angle of elevation \theta = 45^{\circ}

It is also given that the length of the ladder is 20 feet.

Length of ladder = 20 feet.

We have to find the approximate distance of the foot of the ladder from the wall.

Let y be the distance of the foot of the ladder from the wall.

You can see the diagram as shown below in the attachment:

Hypotenuse side = Length of ladder = 20 feet

Adjacent side = Distance of foot of the ladder from the wall = y feet

Using cosine ratio we have;

Substitute the given values we have;

\cos 45^{\circ} = \frac{y}{20}

Multiply both sides by 20 we have;

⇒20 \cdot \cos 45^{\circ} = y

Simplify:

14.1421356 = y

or

y = 14.1421356 feet

Therefore, the approximate distance of the foot of the ladder from the wall is, 14.14 feet

You might be interested in
Allowance method entries
Feliz [49]

Using the Allowance Method, the relevant transactions can be completed in the books of Wild Trout Gallery as follows:

1. <u>Allowance for Doubtful Accounts</u>

Accounts                                          Debit       Credit

Jan. 1 Beginning balance                             $53,800

Jan. 19 Accounts Receivable                           2,560

Apr. 3 Accounts Receivable       $14,670

July 16 Accounts Receivable        19,725

Nov. 23 Accounts Receivable                         4,175

Dec. 31 Accounts Receivable       25,110

Dec. 31 Ending balance          $56,500

Dec. 31 Bad Debts Expenses                   $55,470

Totals                                        $116,005  $116,005

<u>Accounts Receivable</u>

Accounts                                          Debit               Credit

Jan. 1 Beginning balance           $2,290,000

Jan. 19 Allowance for Doubtful           2,560

Jan. 19 Cash                                                            $2,560

Apr. 3  Allowance for Doubtful                                14,670

July 16  Allowance for Doubtful                              19,725

July 16  Cash                                                             6,575

Nov. 23  Allowance for Doubtful         4,175

Nov. 23 Cash                                                             4,175

Dec. 31  Allowance for Doubtful                             25,110

Dec. 31   Sales Revenue            8,020,000

Dec. 31   Cash                                               $8,944,420

Dec. 31 Ending balance                                 $1,299,500

Totals                                        $10,316,735 $10,316,735

3. Expected net realizable value of the accounts receivable as of December 31 = $1,243,000 ($1,299,500 - $56,500)

Allowance for Doubtful Accounts ending balance = $40,100 ($8,020,000 x 0.5%)

<u>Allowance for Doubtful Accounts</u>

Accounts                                          Debit       Credit

Jan. 1 Beginning balance                             $53,800

Jan. 19 Accounts Receivable                           2,560

Apr. 3 Accounts Receivable       $14,670

July 16 Accounts Receivable        19,725

Nov. 23 Accounts Receivable                         4,175

Dec. 31 Accounts Receivable       25,110

Dec. 31 Ending balance           $40,100

Dec. 31 Bad Debts Expenses                  $39,070

Totals                                        $99,605   $99,605

4. a. Bad Debt Expense for the year = $39,070

4.b. Balance for Allowance Accounts = $40,100

4.c. Expected net realizable value of the accounts receivable = $1,259,400 ($1,299,500 - $40,100)

Data Analysis:

Jan. 19 Accounts Receivable $2,560 Allowance for Uncollectible Accounts $2,560

Jan. 19 Cash $2,560 Accounts Receivable $2,560

Apr. 3 Allowance for Uncollectible Accounts $14,670 Accounts Receivable $14,670

July 16 Cash $6,575 Allowance for Uncollectible Accounts $19,725 Accounts Receivable $26,300

Nov. 23 Accounts Receivable $4,175 Allowance for Uncollectible Accounts $4,175

Nov. 23 Cash $4,175 Accounts Receivable $4,175

Dec. 31 Allowance for Uncollectible Accounts $25,110 Accounts Receivable $25,110

Accounts Receivable ending balance = $1,299,500

Allowance for Uncollectible Accounts ending balance = $56,500

Learn more: brainly.com/question/22984282

4 0
3 years ago
A pharmacist has a 12% solution and a 20% solution of boric acid. How much of each should she use to make 80 grams of a 15% solu
nlexa [21]

Step-by-step explanation:

If x = the amount of 12% and y = the amount of 20%, then x + y = 80

Since we need 80 grams of 15%, 80(.15) = 12.

We are given that .12x + .20y = 12.

We can solve the first equation for x or y. Let's do x.

x = 80 - y

.12(80 - y) + .20y = 12

9.6 - .12y + .20y = 12

.08y = 2.4

y = 30

x = 80 - 30 = 50

5 0
3 years ago
Read 2 more answers
6. Describe how we could conduct a simulation to decide whether a simple random sample from this population could produce a samp
BigorU [14]

Step-by-step explanation:

We have proportion p = 50/100 = 0.50

Probability of success = 1-0.50 = 0.50

To conduct simulation, let's assume experiment is to be done 10 times

1. Use binomial parameters n, number = 10, p = 0.50. we then get the necessary size of population To carry out the sampling.

2. We get a random sample and get the size of people who support an against smoking with kids in the car.

3. We repeat this process after drawing sample and also get the number of those in support of ban.

4. After getting n, we find proportion.

8 0
3 years ago
Which is the better buy? 50 fl oz of detergent for $2.49 or <br> 32 fl oz of detergent for $1.99
slamgirl [31]
50 fl oz of detergent
3 0
3 years ago
<img src="https://tex.z-dn.net/?f=%5Cfrac%7Ba%5E%7B2%7D-1%7D%7B2-5a%7D%20times%20%5Cfrac%7B15a-6%7D%7Ba%5E%7B2%7D%2B5a-6%7D" id=
stepan [7]
\bf \cfrac{a^2-1}{2-5a}\times \cfrac{15-6}{a^2+5a-6}\\\\&#10;-----------------------------\\\\&#10;recall\quad \textit{difference of squares}&#10;\\ \quad \\&#10;(a-b)(a+b) = a^2-b^2\qquad \qquad &#10;a^2-b^2 = (a-b)(a+b)\\\\&#10;thus\quad a^2-1\iff a^2-1^2\implies (a-1)(a+1)&#10;\\\\\\&#10;now\quad a^2+5a-6\implies (a+6)(a-1)\\\\&#10;-----------------------------\\\\&#10;thus&#10;\\\\\\&#10;\cfrac{a^2-1}{2-5a}\times \cfrac{15-6}{a^2+5a-6}\implies \cfrac{(a-1)(a+1)}{2-5a}\times \cfrac{3(5a-2)}{(a+6)(a-1)}\\\\&#10;-----------------------------\\\\&#10;

\bf now\quad 3(5a-2) \iff -3(2-5a)\\\\&#10;-----------------------------\\\\&#10;thus&#10;\\\\\\&#10;\cfrac{\underline{(a-1)}(a+1)}{\underline{2-5a}}\times \cfrac{-3\underline{(2-5a)}}{(a+6)\underline{(a-1)}}\implies \cfrac{-3(a+1)}{a+6}
6 0
3 years ago
Other questions:
  • Help me fast PLEASE  The equation y = 1.6x represents the number of laps Henry can swim over time, where y is the number of laps
    7·2 answers
  • I have no idea on how to do this please help now!!
    12·1 answer
  • Will mark brainliest plz help!
    10·1 answer
  • 2x -4y=8 and 3x + 6y = 36
    5·1 answer
  • How much area is left over
    10·2 answers
  • Plot and connect the points A(-4,-4), B(-5,-4), C(-5,-3), D(-4,-3), and find the area of figure ABCD.
    11·1 answer
  • Estamate the value of y when x = 2.5
    10·1 answer
  • !!!!!!! I NEED THE WORK PLS ILL GIVE BRAINLIST!!!
    5·1 answer
  • What is the answer?<br> 5<br> 12<br> 20<br> 1400
    6·1 answer
  • Set B = {55, 57, 58, 59, 61}. Which number in set B has the smallest prime factor?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!