A) Isolate y in both inequalities
1) x + y ≥ 4 => y ≥ 4 - x
2) y < 2x - 3
B) Draw the lines for the following equalities:
1) y = 4 - x
2) y = 2x - 3
C) Shade the regions of solutions
1) The region that is over the line y = 4 - x
2) The region that is below the line y = 2x - 3
The solution is the intersection of both regions; this is the sector between both lines that is to the right of the intersection point, including the portion of the very line y = 4 - x and excluding the portion of the very line y = 2x - 3
Answer:
20 meters
Step-by-step explanation:
The track is circular so it means that after Patrick raced the entire track he is back at the starting point. In other words, every 440 meters he is back to the beginning.
So we would have that, if he races round the track twice, he would run 440(2) = 880 meters and he would be back at the starting point.
The problem asks us how far is he from the starting point at the 900 meter mark. If at 880 meters he is at the starting point, then at 900 meters he would be
meters from the starting point.
9514 1404 393
Answer:
7.056 × 10^31
Step-by-step explanation:
The applicable rule of exponents is ...
(10^a)(10^b) = 10^(a+b)
__

As you know, the commutative and associative properties of multiplication let you rearrange the order of the product to any convenient form. Here it is convenient to group the mantissas together and the powers of 10 together.
__
<em>Additional comments</em>
This is a product your scientific or graphing calculator can produce for you. Likely it will display the result in scientific notation because it won't have enough display digits to show you the product any other way. For smaller numbers, you can set the display mode to give you scientific notation.
If you choose to use a spreadsheet to perform this calculation, the numbers would be entered as 1.2e19 and 5.88e12. The result will be something like 7.056e31. You may have to format the display to show 3 decimal places.
Answer:
False
Do not worry I am not giving you any false answers
<span>(x – h)^2 + (y – k)^2 = r<span>^2
this equation is a derivative of the equation of a circle
x^2 + y^2 = r^2
This is from the origin. If we move the in x or y then the radius will change positions in x or y
with h = -3 and k = 1
we can plug in each set of numbers and solve.
we find Z to be on the circle edge!</span></span>