The remainder from the division of the algebraic equation is -53/8.
<h3>What is the remainder of the algebraic expression?</h3>
The remainder of the algebraic expression can be determined by using the long division method.
Given that:
![\mathbf{f(x) = \dfrac{x^3 - 6x^2 + 3x - 1}{2x-3}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bf%28x%29%20%3D%20%5Cdfrac%7Bx%5E3%20-%206x%5E2%20%2B%203x%20-%201%7D%7B2x-3%7D%7D)
where:
Using the long division method, we have:
![\mathbf{= \dfrac{x^2}{2} +\dfrac{-\dfrac{9x^2}{2}+3x -1 }{2x-3}}](https://tex.z-dn.net/?f=%5Cmathbf%7B%3D%20%5Cdfrac%7Bx%5E2%7D%7B2%7D%20%2B%5Cdfrac%7B-%5Cdfrac%7B9x%5E2%7D%7B2%7D%2B3x%20-1%20%7D%7B2x-3%7D%7D)
![\mathbf{= \dfrac{x^2}{2}-\dfrac{9x}{4} +\dfrac{-\dfrac{-15x}{4}-1 }{2x-3}}](https://tex.z-dn.net/?f=%5Cmathbf%7B%3D%20%5Cdfrac%7Bx%5E2%7D%7B2%7D-%5Cdfrac%7B9x%7D%7B4%7D%20%2B%5Cdfrac%7B-%5Cdfrac%7B-15x%7D%7B4%7D-1%20%7D%7B2x-3%7D%7D)
![\mathbf{= \dfrac{x^2}{2}-\dfrac{9x}{4} -\dfrac{15}{8}+\dfrac{-\dfrac{53}{8} }{2x-3}}](https://tex.z-dn.net/?f=%5Cmathbf%7B%3D%20%5Cdfrac%7Bx%5E2%7D%7B2%7D-%5Cdfrac%7B9x%7D%7B4%7D%20-%5Cdfrac%7B15%7D%7B8%7D%2B%5Cdfrac%7B-%5Cdfrac%7B53%7D%7B8%7D%20%7D%7B2x-3%7D%7D)
![\mathbf{= \dfrac{x^2}{2}-\dfrac{9x}{4} -\dfrac{15}{8}-\dfrac{53 }{8(2x-3)}}](https://tex.z-dn.net/?f=%5Cmathbf%7B%3D%20%5Cdfrac%7Bx%5E2%7D%7B2%7D-%5Cdfrac%7B9x%7D%7B4%7D%20-%5Cdfrac%7B15%7D%7B8%7D-%5Cdfrac%7B53%20%7D%7B8%282x-3%29%7D%7D)
Therefore, we can conclude that the remainder is -53/8.
Learn more about the division of algebraic equations here:
brainly.com/question/4541471
#SPJ1
8 sin2x - 10sinxcosx = 8*2sinXcosX-10sinXcosX = 16sinXcosX - 10sinXcosX = 6sinXcosX=3sin2x
Answer:
(y - x)/(y + x)
Step-by-step explanation:
(1/x - 1/y)/(1/x + 1/y) =
= (1/x - 1/y)/(1/x + 1/y) × (xy)/(xy)
= (y - x)/(y + x)
Answer: The base is 18.3ft
Sam wants to build a wooden deck on his patio, which is in the shape of a parallelogram. The area of the patio is 280 ft2. Find the base. Round your answer to the nearest foot. (height=5x)(base=6x)
Step-by-step explanation:
Given;
Area = 280ft^2
height = 5x
Base = 6x
The area of the parallelogram A can be written as;
Area = base × height
A = b×h
Substituting the values of Area, base and height.
280 = 5x × 6x
280 = 30x^2
x^2 = 280/30
x = √(280/30)
Since the base = 6x ;
Substituting the value of x.
Base = 6x = 6(√(280/30))
Base = 18.3ft
The base is 18.3ft