Answer:
The answer is three fiths
Answer:
C.I = 0.7608 ≤ p ≤ 0.8392
Step-by-step explanation:
Given that:
Let consider a random sample n = 400 candidates where 320 residents indicated that they voted for Obama
probability 
= 0.8
Level of significance ∝ = 100 -95%
= 5%
= 0.05
The objective is to develop a 95% confidence interval estimate for the proportion of all Boston residents who voted for Obama.
The confidence internal can be computed as:

where;
=
= 1.960
SO;






= 0.8 - 0.0392 OR 0.8 + 0.0392
= 0.7608 OR 0.8392
Thus; C.I = 0.7608 ≤ p ≤ 0.8392
Looking at this triangle, we can see that is a form of a 45, 45, 90 triangle
This would mean that 2x-24=x-2
Solve: 2x-24=x-2
subtract x from both sides and add 24 to both sides...
x=22
Answer:
The test is not significant at 5% level of significance, hence we conclude that there's no variation among the discussion sections.
Step-by-step explanation:
Assumptions:
1. The sampling from the different discussion sections was independent and random.
2. The populations are normal with means and constant variance
There's no variation among the discussion sections
There's variation among the discussion sections

Df Sum Sq Mean sq F value Pr(>F)
Section 7 525.01 75 1.87 0.99986
Residuals 189 7584.11 40.13
Test Statistic = 

Since our p-value is greater than our level of significance (0.05), we do not reject the null hypothesis and conclude that there's no significant variation among the eight discussion sections.
As a rule of thumb, the sampling distribution of the sample proportion can be approximated by a normal probability distribution whenever the sample size is large.
<h3>What is the Central limit theorem?</h3>
- The Central limit theorem says that the normal probability distribution is used to approximate the sampling distribution of the sample proportions and sample means whenever the sample size is large.
- Approximation of the distribution occurs when the sample size is greater than or equal to 30 and n(1 - p) ≥ 5.
Thus, as a rule of thumb, the sampling distribution of the sample proportions can be approximated by a normal probability distribution when the sample size is large and each element is selected independently from the same population.
Learn more about the central limit theorem here:
brainly.com/question/13652429
#SPJ4