1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lutik1710 [3]
3 years ago
6

Whats 5 plus 4 ..........

Mathematics
2 answers:
MrMuchimi3 years ago
7 0
5 plus 4 is equivalent to 9. This can be represented abstractly

||||| + |||| = |||||||||
dexar [7]3 years ago
5 0
5 + 4 = 9 

Imagine you have 5 apples and then you add 4 more on,

5 + 1 + 1 + 1 + 1 = 9 

Hope this helps.
You might be interested in
What do you get when you distribute the -4 to the (11 - 2x)
jok3333 [9.3K]
-2 because you have to reduce
6 0
3 years ago
What is the area of the wall that will be painted
svp [43]

Answer:

B. 104

Step-by-step explanation:

Just find the area of the wall and subtract the area of the window. The area of the wall is 10 times 11 which is 110. The area of the window is 2 times 3 which is 6. 110 minus 6 is 104.

6 0
3 years ago
A road sign gives drivers information about traffic on busy highways. One sign shows 15 miles in 20 minutes. What is this speed
SIZIF [17.4K]

Answer: Speed in miles per hour is 45 mph.

Step-by-step explanation:

Since we have given that

Distance covered = 15 miles

Time taken to cover the above mentioned distance = 20 minutes

We need to calculate the speed in miles per hour ,

As we know the formula for " Speed " i.e.

Speed=\frac{Distance}{Time}

Now, we will put the value of distance and time in the above formula:

Speed=\frac{15}{20}\times 60\\\\Speed=15\times 3\\\\Speed=45\ mph

Hence, Speed in miles per hour is 45 mph.

8 0
3 years ago
Read 2 more answers
Ursula picks carrots and radishes from her garden. She picks
densk [106]
2 1/2 more pounds of carrots.
7 0
3 years ago
Find the area of the following<br> kite:<br> A = [?] m²<br> 40 m<br> 16 m<br> 16 m<br> 6 m
Rama09 [41]

Answer:

Area_{kite}=736m^2

Step-by-step explanation:

There are a few methods to find the area of this figure:

1. kite area formula

2. 2 triangles (one top, one bottom)

3. 2 triangles (one left, one right)

4. 4 separate right triangles.

<h3><u>Option 1:  The kite area formula</u></h3>

Recall the formula for area of a kite:  Area_{kite}=\frac{1}{2} d_{1}d_{2} where d1 and d2 are the lengths of the diagonals of the kite ("diagonals" are segments that connect non-adjacent vertices -- in a quadrilateral, vertices that are across from each other).

If you've forgotten why that is the formula for the area of a kite, observe the attached diagram: note that the kite (shaded in) is half of the area of the rectangle that surrounds the kite (visualize the 4 smaller rectangles, and observe that the shaded portion is half of each, and thus the area of the kite is half the area of the large rectangle).

The area of a rectangle is Area_{rectangle}=bh, sometimes written as Area_{rectangle}=bh, where w is the width, and h is the height of the rectangle.

In the diagram, notice that the width and height are each just the diagonals of the kite.  So, the <u>Area of the kite</u> is <u>half of the area of that surrounding rectangle</u> ... the rectangle with sides the lengths of the kite's diagonals.Hence, Area_{kite}=\frac{1}{2} d_{1}d_{2}

For our situation, each of the diagonals is already broken up into two parts from the intersection of the diagonals.  To find the full length of the diagonal, add each part together:

For the horizontal diagonal (which I'll call d1): d_{1}=40m+6m=46m

For the vertical diagonal (which I'll call d2): d_{2}=16m+16m=32m

Substituting back into the formula for the area of a kite:

Area_{kite}=\frac{1}{2} d_{1}d_{2}\\Area_{kite}=\frac{1}{2} (46m)(32m)\\Area_{kite}=736m^2

<h3><u /></h3><h3><u>Option 2:  The sum of the parts (version 1)</u></h3>

If one doesn't remember the formula for the area of a kite, and can't remember how to build it, the given shape could be visualized as 2 separate triangles, the given shape could be visualized as 2 separate triangles (one on top; one on bottom).

Visualizing it in this way produces two congruent triangles.  Since the upper and lower triangles are congruent, they have the same area, and thus the area of the kite is double the area of the upper triangle.

Recall the formula for area of a triangle:  Area_{triangle}=\frac{1}{2} bh where b is the base of a triangle, and h is the height of the triangle <em>(length of a perpendicular line segment between a point on the line containing the base, and the non-colinear vertex)</em>.  Since all kites have diagonals that are perpendicular to each other (as already indicated in the diagram), the height is already given (16m).

The base of the upper triangle, is the sum of the two segments that compose it:  b=40m+6m=46m

<u>Finding the Area of the upper triangle</u>Area_{\text{upper }triangle}=\frac{1}{2} (46m)(16m) = 368m^2

<u>Finding the Area of the kite</u>

Area_{kite}=2*(368m^2)

Area_{kite}=736m^2

<h3><u>Option 3:  The sum of the parts (version 2)</u></h3>

The given shape could be visualized as 2 separate triangles (one on the left; one on the right).  Each triangle has its own area, and the sum of both triangle areas is the area of the kite.

<em>Note:  In this visualization, the two triangles are not congruent, so it is not possible to  double one of their areas to find the area of the kite.</em>

The base of the left triangle is the vertical line segment the is the vertical diagonal of the kite.  We'll need to add together the two segments that compose it:  b=16m+16m=32m.  This is also the base of the triangle on the right.

<u>Finding the Area of left and right triangles</u>

Area_{\text{left }triangle}=\frac{1}{2} (32m)(40m) = 640m^2

The base of the right triangle is the same length as the left triangle: Area_{\text{right }triangle}=\frac{1}{2} (32m)(6m) = 96m^2

<u>Finding the Area of the kite</u>

Area_{kite}=(640m^2)+(96m^2)

Area_{kite}=736m^2

<h3><u>Option 4:  The sum of the parts (version 3)</u></h3>

If you don't happen to see those composite triangles from option 2 or 3 when you're working this out on a particular problem, the given shape could be visualized as 4 separate right triangles, and we're still given enough information in this problem to solve it this way.

<u>Calculating the area of the 4 right triangles</u>

Area_{\text{upper left }triangle}=\frac{1}{2} (40m)(16m) = 320m^2

Area_{\text{upper right }triangle}=\frac{1}{2} (6m)(16m) = 48m^2

Area_{\text{lower left }triangle}=\frac{1}{2} (40m)(16m) = 320m^2

Area_{\text{lower right }triangle}=\frac{1}{2} (6m)(16m) = 48m^2

<u>Calculating the area of the kite</u>

Area_{kite}=(320m^2)+(48m^2)+(320m^2)+(48m^2)

Area_{kite}=736m^2

8 0
2 years ago
Other questions:
  • Find the slope of the line that passes through the points (3, 6) and (5, 3).
    8·2 answers
  • Name three coplanar points
    11·1 answer
  • Find the missing number of each unit rate. 18/3= ?/1 and 12/2= ?/1
    12·1 answer
  • Write in slope intercept form of an equation of the line through (5,-2) with a slope of 3/5
    8·1 answer
  • Find the 51st term of the arithmetic sequence 29, 9, -11,...
    8·1 answer
  • Need help with the picture above:
    7·1 answer
  • Use pemdas (23 + 11) / 2 - 14 write 3 steps
    13·2 answers
  • Please help me with math!
    14·1 answer
  • Find the equation of the line passing through the points (2, -1) and (-6, -5)
    12·1 answer
  • Mrs. Lola and Mr. John bought tacos and burgers for lunch 2 days in a row. One day they bought 4 burgers and 3 tacos for $269, t
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!