The answer is 4.9 moles.
Solution:
Using the equation for boiling point elevation Δt,
Δt = i Kb m
we can rearrange the expression to solve for the molality m of the solution:
m = Δt / i Kb
Since we know that pure water boils at 100 °C, and the Ebullioscopic constant Kb for water is 0.512 °C·kg/mol,
m = (105°C - 100°C) / (2 * 0.512 °C·kg/mol)
= 4.883 mol/kg
From the molality m of the solution of salt added in a kilogram of water, we can now find the number of moles of salt:
m = number of moles / 1.0kg
number of moles = m*1.0kg
= (4.883 mol/kg) * (1.0kg)
= 4.9 moles
4% mass / volume :
4 g ---------> 100 mL
1.2 g ------- ? mL
V = 1.2 * 100 / 4
V = 120 / 4
V = 30 mL
hope this helps!
A mirror is opaque, meaning that it reflects the light and images that shine on it's reflective surface.
(1,0)n +(235,92)U --->(91,36)Kr + (142,56) Ba + 3(1,0)n
I think the correct answer would be D. The reaction that involves an acid and a covalent base would be the reaction of sulfuric acid and water or H2SO4 + 2H2O → 2H3O+ + SO42– . The acid would be H2SO4 and the covalent base would be H2O since it is being held by covalent bonds and when in solution it will have equal amounts of OH- and H+ ions.