Answer:
0.21mol Ar (g)
Explanation:
To convert from litres to moles at STP we must divide the amount of litres by 22.4.
4.7 / 22.4 = 0.21mol Ar (g)
Explanation:
a) 3Pb(NO3)2 + Al2(SO4)3 ---> 3PbSO4 + 2Al(NO3)3
Double displacement
b) 2Cl2 + 3O2 ---> 2Cl2O3
Synthesis
c) 2Fe2O3 + 3C ---> 4Fe + 3CO2
single displacement
Answer:
1.95*10²² molecules are in 5.50 grams of AgNO₃
Explanation:
Being the molar mass of the elements:
- Ag: 107.87 g/mole
- N: 14 g/mole
- O: 16 g/mole
then the molar mass of the compound is:
AgNO₃: 107.87 g/mole + 14 g/mole + 3*16 g/mole= 169.87 g/mole
Then you can apply the following rule of three: if 169.87 grams of the compound are present in 1 mole, 5.50 grams will be present in how many moles?

moles= 0.0324
Avogadro's Number or Avogadro's Constant is called the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole of said substance. Its value is 6.023*10²³ particles per mole. Avogadro's number applies to any substance.
You can apply the following rule of three: if by definition of Avogadro's Number 1 mole of the substance contains 6.023 * 10²³ molecules, 0.0324 moles how many molecules will it have?

molecules=1.95*10²²
<u><em>1.95*10²² molecules are in 5.50 grams of AgNO₃</em></u>
Did you ever find out the answer I'm in dier need
Answer:
2) Add a solution of NaBr
Explanation:
Lead (II) bromide is an inorganic powdery substance that has a solubility in water of 0.973 g/100 mL at 20°C. It is insoluble in alcohol but is soluble in alkali, ammonia, NaBr, and KBr
PbBr₂ is slightly soluble in ammonia, and it reacts with NaOH to produce Pb(OH)₂ and NaBr
Therefore, the best solution for dissolving PbBr₂(s) is NaBr