Answer:
E. 1.5M
Explanation:
because there is total 175.32 g of NaCl dissolved in 2 liter of water, and 58.44 g = 1 mol
so total miles = 175.32/58.32 = 3 moles
now 3 moles are in 2 liter of water, hence one liter contains 3/2= 1.5
Therefore answer is E. 1.5M
Answer:
See Explanation
Explanation:
The Law of Conservation of Matter as applied to chemical reactions says that matter is neither created nor distroyed, only changed in form. This implies that the mass of substances going into a reaction process must equal the mass of products generated during the reaction process.
Empirically,
∑ mass reactants = ∑ mass products
One can test this idea after balancing a chemical equation by determining the sum of formula weights of reactants and products; then compare. If reaction was properly balanced, the total mass reactants = total mass of products.
Example:
Combustion of Methane => CH₄(g) + 2O₂(g) => CO₂(g) + 2H₂O(l)
Equation Weights => 16amu + 64amu <=> 44amu + 36amu
Mass Reactants = Mass Products => 80amu <=> 80amu.
__________________
*amu = atomic mass units => sum of atomic weights of elements
<h2><u>
Answer:</u></h2>
0.126 Liters
<h2><u>
Explanation:</u></h2>
V = mRT / mmP
First, convert the 2.25g of Nitrogen gas into moles. (m in the equation above)
2.25g x 1 mole / 28.0g = 0.08036 moles = m
28.0g = mm
Next, convert the 273 Celsius into Kelvin. (T in the equation above)
273 Celsius + 273.15 = 546.15K = T
R = 0.08206L*atm/mol*K
(Quick Note: The R changes depending on the Pressure Unit so do not use this number every time.)
Now, plug everything into the equation.
V = (0.08036)(0.08206)(546.15)/(28.0)(1.02)
V = 0.126 L
Spinning top, moving car, and rolling ball have kinetic energy I believe
Answer:
The change in entropy is -1083.112 joules per kilogram-Kelvin.
Explanation:
If the water is cooled reversibly with no phase changes, then there is no entropy generation during the entire process. By the Second Law of Thermodynamics, we represent the change of entropy (
), in joules per gram-Kelvin, by the following model:

(1)
Where:
- Mass, in kilograms.
- Specific heat of water, in joules per kilogram-Kelvin.
,
- Initial and final temperatures of water, in Kelvin.
If we know that
,
,
and
, then the change in entropy for the entire process is:


The change in entropy is -1083.112 joules per kilogram-Kelvin.