Answer:

Step-by-step explanation:
Given that a shuttle launch depends on three key devices that may fail independently of each other with probabilities 0.01, 0.02, and 0.02, respectively.
Required probability = the probability for the shuttle to be launched on time
= Probability that all three do not fail
Since each key device is independent of the other
we have
prob that all three do not fail = 
Answer:
- (-1, -32) absolute minimum
- (0, 0) relative maximum
- (2, -32) absolute minimum
- (+∞, +∞) absolute maximum (or "no absolute maximum")
Step-by-step explanation:
There will be extremes at the ends of the domain interval, and at turning points where the first derivative is zero.
The derivative is ...
h'(t) = 24t^2 -48t = 24t(t -2)
This has zeros at t=0 and t=2, so that is where extremes will be located.
We can determine relative and absolute extrema by evaluating the function at the interval ends and at the turning points.
h(-1) = 8(-1)²(-1-3) = -32
h(0) = 8(0)(0-3) = 0
h(2) = 8(2²)(2 -3) = -32
h(∞) = 8(∞)³ = ∞
The absolute minimum is -32, found at t=-1 and at t=2. The absolute maximum is ∞, found at t→∞. The relative maximum is 0, found at t=0.
The extrema are ...
- (-1, -32) absolute minimum
- (0, 0) relative maximum
- (2, -32) absolute minimum
- (+∞, +∞) absolute maximum
_____
Normally, we would not list (∞, ∞) as being an absolute maximum, because it is not a specific value at a specific point. Rather, we might say there is no absolute maximum.
Whattttttt!!!!!!!!!!!!!!!!!
The answer is 58 because its the same thing.
hope this helps.