Answer:
it's 2
I don't know how to explain but yeah its 2
Answer: option D
The sodium potassium ion exchange move sodium and potassium in opposite direction in electrochemical gradients.
Explanation:
The sodium potassium pump is found in many animals plasma membranes and its moves the sodium and potassium ion in opposite direction across the plasma membrane with the hydrolysis of ATP(adenosine triphosphate) to supply the needed energy. It is an active transport process.
The answer would be A—the molecular formula given is that of a long-chain, saturated fatty acid, which would be insoluble in water (i.e., hydrophobic).
—————————
B describes carbohydrates, which can function as a storage of energy (e.g., starch or glycogen) or structural components (e.g., cellulose). The three examples just given are polymers of glucose, a monosaccharide; monosaccharide generally have the empirical formula CH2O; this is not the empirical formula of the given molecule (and, in any case, there are too few oxygen atoms for the number of carbon atoms), and so B is incorrect.
C describes an amino acid, likely an α-amino acid, which consist of a central, saturated carbon bonded to amino (—NH2) and carboxyl (—C(=O)OH) functional groups and a variable side chain, which determines the amino acid’s properties. Since the formula of an amino acid must contain nitrogen, which the formula given doesn’t have, the molecule couldn’t be an amino acid, and so C is incorrect.
D describes nucleic acids. Examples include DNA and RNA; nucleic acids and the nucleotide monomers that comprise them contain a nitrogenous base and a phosphate group. The given molecule’s formula has neither nitrogen nor phosphorus, and so cannot represent an amino acid, making D incorrect.
Answer:
The answer would be the first one: Binding of ribosomes to mRNA.