Answer:
See Explanation
Step-by-step explanation:
![log(x + y) = log3 + \frac{1}{2} logx+ \frac{1}{2} logy \\ \\ log(x + y) = log3 + logx ^{\frac{1}{2}} + logy ^{\frac{1}{2}}\\ \\ log(x + y) = log3 + log(xy) ^{\frac{1}{2}} \\ \\ log(x + y) = log[3(xy) ^{\frac{1}{2}}] \\ \\ x + y = 3(xy) ^{\frac{1}{2}} \\ \\ squaring \: both \: sides \\ {(x + y)}^{2} = \bigg(3(xy) ^{\frac{1}{2}} \bigg)^{2} \\ \\ {x}^{2} + {y}^{2} + 2xy = 9xy \\ \\ {x}^{2} + {y}^{2} = 9xy - 2xy \\ \\ \purple{ \bold{{x}^{2} + {y}^{2} = 7xy}} \\ thus \: proved](https://tex.z-dn.net/?f=log%28x%20%2B%20y%29%20%3D%20log3%20%2B%20%20%5Cfrac%7B1%7D%7B2%7D%20logx%2B%20%20%5Cfrac%7B1%7D%7B2%7D%20logy%20%5C%5C%20%20%5C%5C%20log%28x%20%2B%20y%29%20%3D%20log3%20%2B%20%20%20%20logx%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%2B%20%20%20logy%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5C%5C%20%20%5C%5C%20%20log%28x%20%2B%20y%29%20%3D%20log3%20%2B%20%20%20%20log%28xy%29%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%5C%5C%20%20%5C%5C%20log%28x%20%2B%20y%29%20%3D%20%20log%5B3%28xy%29%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5D%20%5C%5C%20%20%5C%5C%20x%20%2B%20y%20%3D%203%28xy%29%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%5C%5C%20%20%5C%5C%20squaring%20%5C%3A%20both%20%5C%3A%20sides%20%5C%5C%20%20%7B%28x%20%2B%20y%29%7D%5E%7B2%7D%20%20%3D%20%20%5Cbigg%283%28xy%29%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%5Cbigg%29%5E%7B2%7D%20%20%5C%5C%20%20%5C%5C%20%20%7Bx%7D%5E%7B2%7D%20%20%2B%20%20%7By%7D%5E%7B2%7D%20%20%2B%202xy%20%3D%209xy%20%5C%5C%20%20%5C%5C%20%20%7Bx%7D%5E%7B2%7D%20%20%2B%20%20%7By%7D%5E%7B2%7D%20%20%3D%209xy%20-%202xy%20%5C%5C%20%20%5C%5C%20%20%20%5Cpurple%7B%20%5Cbold%7B%7Bx%7D%5E%7B2%7D%20%20%2B%20%20%7By%7D%5E%7B2%7D%20%20%3D%207xy%7D%7D%20%5C%5C%20thus%20%5C%3A%20proved)
Answer:
71.1
Step-by-step explanation:

keep in mind that, a negative coefficient to "x", will make the graph reflect over the y-axis.
The probability that both marbles will be a red color is:
6..... ⇔ number that satisfies the constraint
_____
15..... ⇔ number of outcomes
Answer with Step-by-step explanation:
Let A is non-singular

We have to prove that
is unique.
Suppose B and C are inverse of A such that
and AC=I
By using property 




Hence, the inverse of A is unique.