False.Energy does not involve motion
Answer:
Aqueous carbonic acid (H2CO3) decomposes into a carbon dioxide gas and liquid water. Write a balanced equation for this reaction? | Socratic Aqueous carbonic acid (H2CO3) decomposes into a carbon dioxide gas and liquid water.
Explanation:
Answer:
3626.76dm³
Explanation:
Given parameters:
Number of moles of Nitrogen in tank = 17moles
Temperature of the gas = 34°C
Pressure on the gas = 12000Pa
Unkown:
Volume of the tank, V =?
Converting the parameters to workable units:
We take the temperature from °C to Kelvin
K = 273 + °C = 273 + 34 = 307k
Taking the pressure in Pa to atm:
101325Pa = 1atm
12000Pa = 0.118atm
Solution:
To solve this problem, we employ the use of the ideal gas equation. The ideal gas law combines three gas laws which are the Boyle's law, Charles's law and the Avogadro's law.
It is expressed as PV = nRT
The unknown is the Volume and we make it the subject of the formula
V = 
Where R is called the gas constant and it is given as 0.082atmdm³mol⁻¹K⁻¹
Therefore V =
= 3626.76dm³
Explanation:
According to Bohr's postulates, the electron in the present in the lower energy level can absorb energy and exits to higher energy level. Also, when this electron returns back to its orbit, it emits some energy.
Since the hydrogen consists of 1 electron and 1 proton. The lowest energy configuration of the hydrogen is when n =1 or, when the electron is present in the K-shell or the ground state.
The possible transition for the electron given in the question is :
n = 2, 3 and 4
The schematic diagram of the hydrogen atom consisting of these four quantum levels in which the electron can jump (Absorption) and comeback to from these energy levels (emission) .