Answer:
False
Explanation:
A double covalent bond means 2 atoms or elements are sharing <u>4</u><u> </u><u>e</u><u>l</u><u>e</u><u>c</u><u>t</u><u>r</u><u>o</u><u>n</u><u>s</u>.
*single covalent bond shares 2 electrons.
Answer:
44.8 g
Explanation:
Density = mass / Volume
Mass = density x Volume = 8.96x 5 = 44.8 g
Answer:
The molar mass of Mg(NO₃)₂, 148.3 g/mol.
Explanation:
Step 1: Given data
- Mass of Mg(NO₃)₂ (solute): 42.0 g
- Volume of solution: 259 mL = 0.259 L
Step 2: Calculate the moles of solute
To calculate the moles of solute, we need to know the molar mass of Mg(NO₃)₂, 148.3 g/mol.
42.0 g × 1 mol/148.3 g = 0.283 mol
Step 3: Calculate the molarity of the solution
M = moles of solute / liters of solution
M = 0.283 mol / 0.259 L
M = 1.09 M
Answer:
Yes it is possible that the body might be Claire's
Explanation:
It is possible because the scenario says that it had similar appearances that Claire had
When solutions of sodium sulfide and copper(ii) sulfate are mixed, a precipitate of copper(ii) sulfide is formed. The net ionic equation for this reaction is Cu⁺² (aq) + S⁻² (aq) → CuS (s).
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
Now first write the balanced chemical equation
CuSO₄ (aq) + Na₂S (aq) → CuS(s) + Na₂SO₄ (aq)
Now write the net ionic equation
Cu⁺² (aq) + SO₄⁻² (aq) + 2Na⁺ (aq) + S⁻² (aq) → CuS (s) + 2Na⁺ + SO₄⁻² (aq)
So the net ionic equation is
Cu⁺² (aq) + S⁻² (aq) → CuS (s)
Thus from the above conclusion we can say that When solutions of sodium sulfide and copper(ii) sulfate are mixed, a precipitate of copper(ii) sulfide is formed. The net ionic equation for this reaction is Cu⁺² (aq) + S⁻² (aq) → CuS (s).
Learn more about the Balanced Chemical Equation here: brainly.com/question/26694427
#SPJ4