1st you need to find the mole ratio between KClO3 and O2. To find that you need to take the coefficents of each of the compounds. That gives a ratio of 2:3.
Now we find out how many each unit is:
2x = 12
x = 6
Now we multiply it by 3 to find the number of moles of O2
3(6) = 18 mol O2.
Answer:
1.17 grams of HCl can neutralize 2.7 grams sodium bicarbonate
Explanation:
Step 1: Data given
Mass of sodium bicarbonate = 2.7 grams
Step 2: The balanced equation
HCl + NaHCO3 ⇔ NaCl + H2O + CO2
Step 3: Calculate moles NaHCO3
moles NaHCO3 =2.7 g / 84 g/mol= 0.032 moles
Step 4: Calculate moles HCl
For 1 mol NaHCO3 we need 1 mol HCl
For 0.032 moles NaHCO3 = 0.032 moles HCl
Step 5: Calculate mass HCl
Mass HCl = moles HCl * molar mass HCl
mass HCl = 0.032 * 36.46 g/mol= 1.17 grams
1.17 grams of HCl can neutralize 2.7 grams sodium bicarbonate
Answer:
The density of igneous rocks is related to its color. Darker colored rocks have a higher density because of its greater mineral and iron content. Its characteristics is opposite compared to lighter colored rocks that have less density because of lower mineral and iron content
An anion has a negative charge, while a cation has a positive charge.
If 4 moles of P is used by 5 mole of O2
then....0.489 moles will be used by 5/4 × .489 = .611 moles of O2
so .611 moles
so if 4 moles of P is burnt , 1 mole of P4O10 is produced ....so for .489 moles...... .489/4=.122 moles !
so mass will be .122× 283.89 = 34.7 grams
so first ans is .611 moles and second is 34.7 grams !
if you have any problem regarding this , just comment !!!