Answer:
The percentage of the bag that should have popped 96 kernels or more is 2.1%.
Step-by-step explanation:
The random variable <em>X</em> can be defined as the number of popcorn kernels that popped out of a mini bag.
The mean is, <em>μ</em> = 72 and the standard deviation is, <em>σ</em> = 12.
Assume that the population of the number of popcorn kernels that popped out of a mini bag follows a Normal distribution.
Compute the probability that a bag popped 96 kernels or more as follows:
Apply continuity correction:


*Use a <em>z</em>-table.
The probability that a bag popped 96 kernels or more is 0.021.
The percentage is, 0.021 × 100 = 2.1%.
Thus, the percentage of the bag that should have popped 96 kernels or more is 2.1%.
Answer:
13
Step-by-step explanation:
Given:
- Square stickers that were 3/4 in long
- The spine is 10 and 1/2 in long
If she laid the stickers side by side without gaps or overlaps so the number of sticker to cover the length of the spine:

10 :
≈13
She needs 13 stickers cover the length of the spine