Answer:
No, According to triangle Inequality theorem.
Step-by-step explanation:
Given:
Length given are 4 in., 5 in., 1 in.
We need to check whether with these lengths we can create triangular components.
The Triangle Inequality Theorem states that the sum of any 2 sides of a triangle must be greater than the measure of the third side.
These must be valid for all three sides.
Hence we will check for all three side,
4 in + 5 in > 1 in. (It is a Valid Condition)
1 in + 5 in > 4 in. (It is a Valid Condition)
4 in + 1 in > 5 in. (It is not a Valid Condition)
Since 2 condition are valid and 1 condition is not we can say;
A triangular component cannot be created with length 4 in, 5 in, and 1 in by using triangle inequality theorem (since all three conditions must be valid).
Answer:
Step-by-step explanation:
The second choice down is the one you want. I'm not sure why you're confused if you simply have to graph the 2 functions to see on your calculator where they intersect. Unless you don't know how to access the change of base function in a TI84...
Hit "alpha" then "window" and 5 will open up the option to enter a base on a log.
A single die is rolled twice. the set of 36 equally likely outcomes is {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1),
Maksim231197 [3]
<span>We need to find the rolls whose sum is greater than 10. By looking at the outcomes, we see that (5,6), (6,5), and (6,6) all have a sum greater than 10. Therefore, there are 3 chances to get a sum greater than 10. Since there are 36 chances overall, the probability of rolling greater than 10 are 3/36 = 1/12.</span>
Step-by-step explanation:
I'm trying to solve this problem but there's something wrong
What's the radius of one ball?
Answer:
D
Step-by-step explanation: