ANSWER:
Let t = logtan[x/2]
⇒dt = 1/ tan[x/2] * sec² x/2 × ½ dx
⇒dt = 1/2 cos² x/2 × cot x/2dx
⇒dt = 1/2 * 1/ cos² x/2 × cosx/2 / sin x/2 dx
⇒dt = 1/2 cosx/2 / sin x/2 dx
⇒dt = 1/sinxdx
⇒dt = cosecxdx
Putting it in the integration we get,
∫cosecx / log tan(x/2)dx
= ∫dt/t
= log∣t∣+c
= log∣logtan x/2∣+c where t = logtan x/2
Answer:
c is your answer
Step-by-step explanation:
please mark brailiest
Answer:
1).B
2).A
3).D
4).B
5).C
6).D
7).D
8).B
9).C
10). I believe it is A
Step-by-step explanation:
I'm sorry, i do not know how to explain this, I hope I helped you in some way and I hope these answers work for you :)
yes obtuse angles measure over 90 degrees and less 180 degrees