Hi,
I've found a link that should assist you or answer your question.
http://click.dji.com/ANbvbbP7bwUWtSACp6U_?pm=link&as=0004
Have a nice day!
Answer:
23376 days
Explanation:
The problem can be solved using Kepler's third law of planetary motion which states that the square of the period T of a planet round the sun is directly proportional to the cube of its mean distance R from the sun.

where k is a constant.
From equation (1) we can deduce that the ratio of the square of the period of a planet to the cube of its mean distance from the sun is a constant.

Let the orbital period of the earth be
and its mean distance of from the sun be
.
Also let the orbital period of the planet be
and its mean distance from the sun be
.
Equation (2) therefore implies the following;

We make the period of the planet
the subject of formula as follows;

But recall that from the problem stated, the mean distance of the planet from the sun is 16 times that of the earth, so therefore

Substituting equation (5) into (4), we obtain the following;

cancels out and we are left with the following;

Recall that the orbital period of the earth is about 365.25 days, hence;

At speeds over 30 mph, you should maintain a following distance of at least <u>three full seconds</u> behind the vehicle ahead of you.
As a general rule and common sense at a speed of 30 mph you can leave three full seconds so that you can achieve a prudent distance between the car you are driving and the car in front in order to be able to perform some kind of maneuver if an accident or unforeseen event occurs.
To count the full three seconds you can use the technique of counting the Mississippis as follows: Mississippi one, Mississippi two, Mississippi three.
<h3>What is an accident?</h3>
An accident is an unexpected event that generally causes damage, injury or negative consequences.
Learn more about accident at: brainly.com/question/28070413
#SPJ4