Answer:
fdghgjkk , mmn xgwvdkqgeb e keqwkclhehjq qbqlq.bq;q
Explanation:
I do not recall the answer to this question
Answer:
Unbalanced forces change the motion of an object. If an object is at rest and an unbalanced force pushes or pulls the object, it will move. Unbalanced forces can also change the speed or direction of an object that is already in motion.
Answer:
E = (-3.61^i+1.02^j) N/C
magnitude E = 3.75N/C
Explanation:
In order to calculate the electric field at the point P, you use the following formula, which takes into account the components of the electric field vector:
(1)
Where the minus sign means that the electric field point to the charge.
k: Coulomb's constant = 8.98*10^9Nm^2/C^2
q = -4.28 pC = -4.28*10^-12C
r: distance to the charge from the point P
The point P is at the point (0,9.83mm)
θ: angle between the electric field vector and the x-axis
The angle is calculated as follow:

The distance r is:

You replace the values of all parameters in the equation (1):
![\vec{E}=(8.98*10^9Nm^2/C^2)\frac{4.28*10^{-12}C}{(10.21*10^{-3}m)}[-cos(15.84\°)\hat{i}+sin(15.84\°)\hat{j}]\\\\\vec{E}=(-3.61\hat{i}+1.02\hat{j})\frac{N}{C}\\\\|\vec{E}|=\sqrt{(3.61)^2+(1.02)^2}\frac{N}{C}=3.75\frac{N}{C}](https://tex.z-dn.net/?f=%5Cvec%7BE%7D%3D%288.98%2A10%5E9Nm%5E2%2FC%5E2%29%5Cfrac%7B4.28%2A10%5E%7B-12%7DC%7D%7B%2810.21%2A10%5E%7B-3%7Dm%29%7D%5B-cos%2815.84%5C%C2%B0%29%5Chat%7Bi%7D%2Bsin%2815.84%5C%C2%B0%29%5Chat%7Bj%7D%5D%5C%5C%5C%5C%5Cvec%7BE%7D%3D%28-3.61%5Chat%7Bi%7D%2B1.02%5Chat%7Bj%7D%29%5Cfrac%7BN%7D%7BC%7D%5C%5C%5C%5C%7C%5Cvec%7BE%7D%7C%3D%5Csqrt%7B%283.61%29%5E2%2B%281.02%29%5E2%7D%5Cfrac%7BN%7D%7BC%7D%3D3.75%5Cfrac%7BN%7D%7BC%7D)
The electric field is E = (-3.61^i+1.02^j) N/C with a a magnitude of 3.75N/C
The emerging velocity of the bullet is <u>71 m/s.</u>
The bullet of mass <em>m</em> moving with a velocity <em>u</em> has kinetic energy. When it pierces the block of wood, the block exerts a force of friction on the bullet. As the bullet passes through the block, work is done against the resistive forces exerted on the bullet by the block. This results in the reduction of the bullet's kinetic energy. The bullet has a speed <em>v</em> when it emerges from the block.
If the block exerts a resistive force <em>F</em> on the bullet and the thickness of the block is <em>x</em> then, the work done by the resistive force is given by,

This is equal to the change in the bullet's kinetic energy.

If the thickness of the block is reduced by one-half, the bullet emerges out with a velocity v<em>₁.</em>
Assuming the same resistive forces to act on the bullet,

Divide equation (2) by equation (1) and simplify for v<em>₁.</em>

Thus the speed of the bullet is 71 m/s