First, we would need to know the decaying isotope.
Next, we use the decay formula
A = Ao e^(-kt)
After determining the remaining amount after two hours, the decay reaction can be used to determine the number of gamma rays released. If the given is in terms of mole, then the total energy is
E = 140n KeV where n is the number of moles of gamma rays released
Wavelength of X-rays = 10⁻¹⁰ m
Wavelength of UV = 1000 x 10⁻¹⁰
= 10⁻⁷ m
Expensive: Hydrogen gas actually takes a considerable measure of work to free if from different components. If it were basic and simple to separate, everybody would be utilizing it. It’s now being utilized to power some hybrid vehicles, yet right now it is not a reasonable type of fuel for everybody, mainly because it’s pricey and it’s difficult to get it from place to place. Until research and innovation goes far enough to make this a simpler and cheaper task, hydrogen will likely be something that only the rich can afford.Not Enough Hydrogen Fuel Stations: As you likely know, it’s very difficult to change “the way things are.” As difficult as hydrogen is to create and transport, it gets to be considerably pricier when you consider attempting to utilize it to supplant fuel. There is no current framework set up to hydrogen as the primary fuel for the normal driver. Service stations and vehicles themselves would all must be changed in order to use hydrogen, which can take a lot of time and money to do. It doesn’t seem cost efficient to change from the norm.Safety Concerns: Hydrogen in itself has a lot of power behind it. Though it is less dangerous than gasoline, it’s profoundly flammable and constantly in the news for the potential dangers connected with it. Unlike gas, hydrogen has no smell. Sensors must be used to detect a leak.
for acceleration we can define that rate of change in velocity is know as acceleration
So whenever velocity of train is changing with time we can say train is accelerating
Now here if initially train is standstill then after some time its speed is 5 m/s
so here the train is accelerated first time
Then on straight path its speed changed from 5 m/s to 10 m/s so here train gets accelerated second time
After this train chugged around a curve with same speed 10 m/s
SO here since train is moving in curve so here its direction of velocity is continuously changing and this type of acceleration is known as centripetal acceleration
SO this is accelerated Third time
Then its speed decreases and it comes to speed of 5 m/s from 10 m/s
So here it is acceleration of train for Fourth time
Then finally train comes to stop so again its speed changed from 5 m/s to 0
so this is acceleration of train Fifth time
So total train will accelerate 5 times in whole path