1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
attashe74 [19]
3 years ago
11

A car dealership decreased the price of a certain car by 4%. The original price was 33,200. Write new in terms of original price

as decimal. Then use answer to determine the new price.
Mathematics
1 answer:
Natasha2012 [34]3 years ago
5 0
.04 times 33200 = 1328
33200-1328= 31872
The new price is $31872
You might be interested in
What is the measure of angle K in degrees?
maxonik [38]
The measure is 30° degrees
5 0
3 years ago
Read 2 more answers
where would an imaginary line need to be drawn to reflect across an axis of symmetry so that a regular pentagon can carry onto i
irina [24]

Answer:

An imaginary line would need to be drawn at any angle to the center of the side opposite the angle to  reflect across an axis of symmetry so that a regular pentagon can carry onto itself. Hope this answer helps.

5 0
3 years ago
A BAKER USED 4 CUPS OF FLOUR TO MAKE 5 BEATLES OF COOKIES. HE USED ???? OF A CUP OF FLOUR TO MAKE 1 BATCH OF COOKIES
zepelin [54]

Answer:

Your answer will be 1.2 cups of flour

or

1  1/5

Step-by-step explanation: I hope this heled, if not let me know and I will get you a better answer! :)

5 0
3 years ago
Read 2 more answers
Find the mass and center of mass of the lamina that occupies the region D and has the given density function rho. D is the trian
Alla [95]

Answer: mass (m) = 4 kg

              center of mass coordinate: (15.75,4.5)

Step-by-step explanation: As a surface, a lamina has 2 dimensions (x,y) and a density function.

The region D is shown in the attachment.

From the image of the triangle, lamina is limited at x-axis: 0≤x≤2

At y-axis, it is limited by the lines formed between (0,0) and (2,1) and (2,1) and (0.3):

<u>Points (0,0) and (2,1):</u>

y = \frac{1-0}{2-0}(x-0)

y = \frac{x}{2}

<u>Points (2,1) and (0,3):</u>

y = \frac{3-1}{0-2}(x-0) + 3

y = -x + 3

Now, find total mass, which is given by the formula:

m = \int\limits^a_b {\int\limits^a_b {\rho(x,y)} \, dA }

Calculating for the limits above:

m = \int\limits^2_0 {\int\limits^a_\frac{x}{2}  {2(x+y)} \, dy \, dx  }

where a = -x+3

m = 2.\int\limits^2_0 {\int\limits^a_\frac{x}{2}  {(xy+\frac{y^{2}}{2} )} \, dx  }

m = 2.\int\limits^2_0 {(-x^{2}-\frac{x^{2}}{2}+3x )} \, dx  }

m = 2.\int\limits^2_0 {(\frac{-3x^{2}}{2}+3x)} \, dx  }

m = 2.(\frac{-3.2^{2}}{2}+3.2-0)

m = 2(-4+6)

m = 4

<u>Mass of the lamina that occupies region D is 4.</u>

<u />

Center of mass is the point of gravity of an object if it is in an uniform gravitational field. For the lamina, or any other 2 dimensional object, center of mass is calculated by:

M_{x} = \int\limits^a_b {\int\limits^a_b {y.\rho(x,y)} \, dA }

M_{y} = \int\limits^a_b {\int\limits^a_b {x.\rho(x,y)} \, dA }

M_{x} and M_{y} are moments of the lamina about x-axis and y-axis, respectively.

Calculating moments:

For moment about x-axis:

M_{x} = \int\limits^a_b {\int\limits^a_b {y.\rho(x,y)} \, dA }

M_{x} = \int\limits^2_0 {\int\limits^a_\frac{x}{2}  {2.y.(x+y)} \, dy\, dx }

M_{x} = 2\int\limits^2_0 {\int\limits^a_\frac{x}{2}  {y.x+y^{2}} \, dy\, dx }

M_{x} = 2\int\limits^2_0 { ({\frac{y^{2}x}{2}+\frac{y^{3}}{3})}\, dx }

M_{x} = 2\int\limits^2_0 { ({\frac{x(-x+3)^{2}}{2}+\frac{(-x+3)^{3}}{3} -\frac{x^{3}}{8}-\frac{x^{3}}{24}  )}\, dx }

M_{x} = 2.(\frac{-9.x^{2}}{4}+9x)

M_{x} = 2.(\frac{-9.2^{2}}{4}+9.2)

M_{x} = 18

Now to find the x-coordinate:

x = \frac{M_{y}}{m}

x = \frac{63}{4}

x = 15.75

For moment about the y-axis:

M_{y} = \int\limits^2_0 {\int\limits^a_\frac{x}{2}  {2x.(x+y))} \, dy\,dx }

M_{y} = 2.\int\limits^2_0 {\int\limits^a_\frac{x}{2}  {x^{2}+yx} \, dy\,dx }

M_{y} = 2.\int\limits^2_0 {y.x^{2}+x.{\frac{y^{2}}{2} } } \,dx }

M_{y} = 2.\int\limits^2_0 {x^{2}.(-x+3)+\frac{x.(-x+3)^{2}}{2} - {\frac{x^{3}}{2}-\frac{x^{3}}{8}  } } \,dx }

M_{y} = 2.\int\limits^2_0 {\frac{-9x^3}{8}+\frac{9x}{2}   } \,dx }

M_{y} = 2.({\frac{-9x^4}{32}+9x^{2})

M_{y} = 2.({\frac{-9.2^4}{32}+9.2^{2}-0)

M{y} = 63

To find y-coordinate:

y = \frac{M_{x}}{m}

y = \frac{18}{4}

y = 4.5

<u>Center mass coordinates for the lamina are (15.75,4.5)</u>

3 0
3 years ago
This is for 16 points<br> Let me know when you got it
Sladkaya [172]
Yeah B it’s B I’m pretty sure
4 0
3 years ago
Other questions:
  • What is the range of this function?
    11·2 answers
  • 4
    14·1 answer
  • A rectangular pyramid is sliced so the cross section is perpendicular to its base and passes through its vertex. What is the sha
    14·2 answers
  • -588298÷239<br><br> This is real homework please help me out...
    5·1 answer
  • PLEASE ANSWER ASAP! NO EXPLANATION NEEDED!
    13·2 answers
  • Mia and Elizabeth share a reward of $140 in a ratio of 2:5. what fraction of the total reward does mia have?
    8·1 answer
  • -2(8x-1)=5(1-3x)<br><br> What is the answer to this equation?
    12·1 answer
  • 10 ( y - 2)<br> what is the answer
    15·2 answers
  • *PLEASE ANSWER* // *CONFUSED*
    13·1 answer
  • You have two cards with a sum of (-12) in your hand. What two cards could you have? *
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!