Answer:
H0 : μN ≤ μD
H1 : μN > μD
Right tailed
Test statistic = 1.33
Pvalue = 0.097
Fail to reject the Null
Step-by-step explanation:
H0 : μN ≤ μD
H1 : μN > μD
The test is right tailed ; culled from the direction of the greater than sign ">"
Night students :
n1 =30 x1= 3.34 s1 = 0.02
Day students:
n2 = 30 x2 = 3.32 s2 = 0.08
The test statistic :
(x1 - x2) / √(s1²/n1) + (s2²/n2)
T= (3.34 - 3.32) / √(0.02²/30) + (0.08²/30)
T = 0.02 / 0.0150554
Test statistic = 1.328
Using the conservative approach ;
df = Smaller of n1 - 1 or n2 - 1
df = 30 - 1 = 29
Pvalue(1.328, 29) = 0.097
At α = 0.10
Pvalue < α ; Hence, we reject H0 ; and conclude that there is significant evidence that GPA of night student is greater than GPA of day student
Answer:
x=9.5 and y=15.3
Step-by-step explanation:
to find x you do sine of 32 = x/18 because the sine is opposite/hypotenuse
you put in a calculator sine (32) x 18 and get 9.538546756
so x equals 9.538546756 but it says to round to the nearest tenth so x equals 9.5
to find y you do the cosine of 32 = y/18 because cosine is adjacent/hypotenuse
cosine of (32) x 18 = 15.26486573 so you equals 15.26486573 but since you have to round to the nearest tenth y = 15.3
Answer:
F,D Green/A,R,E Orange/B,C Yellow
Step-by-step explanation:
Let
x = number of apples.
y = number of oranges.
we have to write the following equation to represent the problem:
4x + 6y = 15
To satisfy the equation, Jon must have used
x = 2.25
y = 1
Substituting
4 (2.25) +6 (1) = 15
9 + 6 = 15
answer
Jhon used 2.25kg of apple and 1kg of orange to make the salad.
Note: Since the problem does not have any other restrictions, there may be several apple and orange combinations that cost $ 15 per salad.
There are several ways to do this.
I'll show you two methods.
1) Pick two points on the line and use the slope formula.
Look for two points that are easy to read. It is best if the points are on grid line intersections. For example, you can see points (-4, -1) and (0, -2) are easy to read.
Now we use the slope formula.
slope = m = (y2 - y1)/(x2 - x1)
Call one point (x1, y1), and call the other point (x2, y2).
Plug in the x1, x2, y1, y2 values in the formula and simplify the fraction.
Let's call point (-4, -1) point (x1, y1).
Then x1 = -4, and y1 = -1.
Let's call point (0, -2) point (x2, y2).
Then x2 = 0, and y2 = -2.
Plug in values into the formula:
m = (y2 - y1)/(x2 - x1) = (-2 - (-1))/(0 - (-4)) = (-2 + 1)/(0 + 4) = -1/4
The slope is -1/4
2) Pick two points on the graph and use rise over run.
The slope is equal to the rise divided by the run.
Run is how much you go up or down.
Rise is how much you go right or left.
Pick two easy to read points.
We can use the same points we used above, (-4, -1) and (-0, -2).
Start at point (0, -2).
How far up or down do you need to go to get to point (-4, -1)?
Answer: 1 unit up, or +1.
The rise is +1.
Now that we went up 1, how far do you go left or right top go to point (-4, -1)?
Answer: 4 units to the left. Going left is negative, so the run is -4.
Slope = rise/run = +1/-4 = -1/4
As you can see we got the same slope using both methods.