Answer:
I think the answer is 14, but rounded to the nearest tenth will be 10.......
Step-by-step explanation:
Complete Question
The Brown's Ferry incident of 1975 focused national attention on the ever-present danger of fires breaking out in nuclear power plants. The Nuclear Regulatory Commission has estimated that with present technology there will be on average, one fire for every 10 years for a reactor. Suppose that a certain state has two reactors on line in 2020 and they behave independently of one another. Assuming the incident of fires for individual reactors can be described by a Poisson distribution, what is the probability that by 2030 at least two fires will have occurred at these reactors?
Answer:
The value is 
Step-by-step explanation:
From the question we are told that
The rate at which fire breaks out every 10 years is
Generally the probability distribution function for Poisson distribution is mathematically represented as

Here x represent the number of state which is 2 i.e 
Generally the probability that by 2030 at least two fires will have occurred at these reactors is mathematically represented as

=> ![P(x_1 + x_2 \ge 2 ) = 1 - [P(x_1 + x_2 = 0 ) + P( x_1 + x_2 = 1 )]](https://tex.z-dn.net/?f=P%28x_1%20%2B%20x_2%20%5Cge%202%20%29%20%3D%20%201%20-%20%5BP%28x_1%20%2B%20x_2%20%3D%200%20%29%20%2B%20P%28%20x_1%20%2B%20x_2%20%3D%201%20%29%5D)
=> ![P(x_1 + x_2 \ge 2 ) = 1 - [ P(x_1 = 0 , x_2 = 0 ) + P( x_1 = 0 , x_2 = 1 ) + P(x_1 , x_2 = 0)]](https://tex.z-dn.net/?f=P%28x_1%20%2B%20x_2%20%5Cge%202%20%29%20%3D%20%201%20-%20%5B%20P%28x_1%20%20%3D%200%20%2C%20%20x_2%20%3D%200%20%29%20%2B%20P%28%20x_1%20%3D%200%20%2C%20x_2%20%3D%201%20%29%20%2B%20P%28x_1%20%2C%20x_2%20%3D%200%29%5D)
=> 
=> ![P(x_1 + x_2 \ge 2 ) = 1 - \{ [ \frac{1^0}{ 0! } * e^{-1}] * [[ \frac{1^0}{ 0! } * e^{-1}]] )+ ( [ \frac{1^1}{1! } * e^{-1}] * [[ \frac{1^1}{ 1! } * e^{-1}]] ) + ( [ \frac{1^1}{ 1! } * e^{-1}] * [[ \frac{1^0}{ 0! } * e^{-1}]]) \}](https://tex.z-dn.net/?f=P%28x_1%20%2B%20x_2%20%5Cge%202%20%29%20%3D%20%201%20-%20%5C%7B%20%5B%20%5Cfrac%7B1%5E0%7D%7B%200%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%20%2A%20%5B%5B%20%5Cfrac%7B1%5E0%7D%7B%200%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%5D%20%29%2B%20%28%20%5B%20%5Cfrac%7B1%5E1%7D%7B1%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%20%2A%20%5B%5B%20%5Cfrac%7B1%5E1%7D%7B%201%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%5D%20%29%20%2B%20%28%20%5B%20%5Cfrac%7B1%5E1%7D%7B%201%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%20%2A%20%5B%5B%20%5Cfrac%7B1%5E0%7D%7B%200%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%5D%29%20%5C%7D)
=> ![P(x_1 + x_2 \ge 2 )= 1- [[0.3678 * 0.3679] + [0.3678 * 0.3679] + [0.3678 * 0.3679] ]](https://tex.z-dn.net/?f=P%28x_1%20%2B%20x_2%20%5Cge%202%20%29%3D%201-%20%5B%5B0.3678%20%20%2A%200.3679%5D%20%2B%20%5B0.3678%20%20%2A%200.3679%5D%20%2B%20%5B0.3678%20%20%2A%200.3679%5D%20%20%5D)

Answer:
P(X
74) = 0.3707
Step-by-step explanation:
We are given that the score of golfers for a particular course follows a normal distribution that has a mean of 73 and a standard deviation of 3.
Let X = Score of golfers
So, X ~ N(
)
The z score probability distribution is given by;
Z =
~ N(0,1)
where,
= population mean = 73
= standard deviation = 3
So, the probability that the score of golfer is at least 74 is given by = P(X
74)
P(X
74) = P(
) = P(Z
0.33) = 1 - P(Z < 0.33)
= 1 - 0.62930 = 0.3707
Therefore, the probability that the score of golfer is at least 74 is 0.3707 .