Based on the knowledge of <em>trigonometric</em> expressions and properties of <em>trigonometric</em> functions, the value of the <em>sine</em> function is equal to - √731 / 30.
<h3>How to find the value of a trigonometric function</h3>
Herein we must make use of <em>trigonometric</em> expressions and properties of <em>trigonometric</em> functions to find the right value. According to trigonometry, both cosine and sine are <em>negative</em> in the <em>third</em> quadrant. Thus, by using the <em>fundamental trigonometric</em> expression (sin² α + cos² α = 1) and substituting all known terms we find that:


sin θ ≈ - √731 / 30
Based on the knowledge of <em>trigonometric</em> expressions and properties of <em>trigonometric</em> functions, the value of the <em>sine</em> function is equal to - √731 / 30.
To learn more on trigonometric functions: brainly.com/question/6904750
#SPJ1
Answer:
p²q³ + pq and pq(pq² + 1)
Step-by-step explanation:
Given
3p²q² - 3p²q³ +4p²q³ -3p²q² + pq
Required
Collect like terms
We start by rewriting the expression
3p²q² - 3p²q³ +4p²q³ -3p²q² + pq
Collect like terms
3p²q² -3p²q² - 3p²q³ +4p²q³ + pq
Group like terms
(3p²q² -3p²q²) - (3p²q³ - 4p²q³ ) + pq
Perform arithmetic operations on like terms
(0) - (-p²q³) + pq
- (-p²q³) + pq
Open bracket
p²q³ + pq
The answer can be further simplified
Factorize p²q³ + pq
pq(pq² + 1)
Hence, 3p²q² - 3p²q³ +4p²q³ -3p²q² + pq is equivalent to p²q³ + pq and pq(pq² + 1)
Answer:

Step-by-step explanation:
A ratio is a comparison of two quantities and can be written in several forms including fractions. It is most commonly written in fraction form or a:b.
To write a ratio, we count the number of each quantity we are comparing or use the variable for that quantity. We write radius:circumference. Recall, the circumference of a circle can be found using
or
.
We write r:
or r:
.
We can also write in fraction form:
or 
Answer:
Its the first choice.
Step-by-step explanation:
x^2+4x-4 = 8
x^2 + 4x - 4 - 8 = 0
x^2 + 4x - 12 = 0
(x + 6)(x - 2) = 0
x = -6, 2.
Answer:
Volume = 144 m³
Step-by-step explanation:
Volume of triangular prism = ½*b*h*l
Where,
Base of triangular base (b) = 4 m
Height of triangular base (h) = 12 m
Length of prism (l) = 6 m
Volume = ½*4*12*6
Volume = 2*12*6 = 144 m³