Answer:
(b) To get m3 to slide, m1 must be increased, never decreased.
Explanation:
Lab experiments require attentiveness. If there is one thing missed or not taken seriously whole experiment could go wrong. In this case to slide m3 there should be more weight at m1. If the weight of m1 is lesser than m3 then the object will not slide. It will remain at the point where there is more weight. To slide an object there must be less frictional surface and more weight placed at the desired end point.
<span> Beryllium has an exclusive </span>+2<span> oxidation state in all of its compounds</span>
Given parameters:
Mass of the car = 1000kg
Unknown:
Height = ?
To find the heights for the different amount potential energy given, we need to understand what potential energy is.
Potential energy is the energy at rest due to the position of a body.
It is mathematically expressed as:
P.E = mgh
m is the mass
g is the acceleration due to gravity = 9.8m/s²
h is the height of the car
Now the unknown is h, height and we make it the subject of the expression to make for easy calculation.
h = 
<u>For 2.0 x 10³ J;</u>
h =
= 0.204m
<u>For 2.0 x 10⁵ J;</u>
h =
= 20.4m
<u>For 1.0kJ = 1 x 10³J; </u>
h =
= 0.102m
Answer:
0
Explanation:
Forces with equal magnitudes and opposite directions cancel each other out, so the net force is 0.
Answer:
Chemical composition, Temperature, Radial velocity, Size or diameter of the star, Rotation.
Explanation:
Elemental abundances are determined by analyzing the relative strengths of the absorption lines in the spectrum of a star.
The Spectral class to which the star belongs gives the information related to the temperature of the star. It is the spectral lines that determine the spectral class O B A F G K M are the spectral classes.
By measuring the wavelengths of the lines in the star's spectrum gives the radial velocity. Doppler shift is the method used to find the radial velocity.
A star can be classified as a giant or a dwarf . A giant star will have narrow width spectral lines whereas a dwarf star has wider spectral lines.
Broadening of the spectral lines will determine the star's rotation.