Answer:
20 m
Explanation:
We'll begin by calculating the kinetic energy of the mass. This can be obtained as follow:
Mass (m) = 10 kg
Velocity (v) = 20 m/s
Kinetic energy (KE) =?
KE = ½mv²
KE = ½ × 10 × 20²
KE = 5 × 400
KE = 2000 J
Finally, we shall the height to which the mass must be located in order to have potential energy that is the same as the kinetic energy. This can be obtained as follow:
Mass (m) = 10 kg
Acceleration due to gravity (g) = 10 m/s²
Potential energy (PE) = Kinetic energy (KE) = 2000 J
Height (h) =..?
PE = mgh
2000 = 10 × 10 × h
2000 = 100 × h
Divide both side by 100
h = 2000 / 100
h = 20 m
Thus, the object must be located at a height of 20 m in order to have potential energy that is the same as the kinetic energy.
Answer:
The force of the car is 15000N.
Explanation:
The unit of force is Newtons (N), so based on the question, the force is 15000 Newtons.
There the potential difference is -0. 553 keQ/R.
What is Electric potential ?
The amount of labor required to convey a unit of electric charge from a reference point to a given place in an electric field is known as the electric potential (also known as the electric field potential, potential drop, or the electrostatic potential).
Electric potential at point 0,
V1 = ke Q/R
Electric potential at x= 2R
V2= keQ/ root5. R
Therefore potential difference is
dV = V2 - V1
Putting the values we get ,
dV = -0. 553 keQ/R
To learn more about electric potential click on the link below:
brainly.com/question/23980243
#SPJ4
5.678 * 10^10 is the answer