Answer : 
Explanation :
The word kinematics means the study of motion. Kinematic variables gives the description of the motion of the body.
Displacement, Velocity, acceleration and time are associated with the motion of particle.
Wavenumber is defined as the frequency of wave, which is measured in cycles per unit distance.
Wave number is also defines as:

where,
is wavelength

since, 
So, 
Where,
is angular frequency and
is velocity of wave.
Hence, the relationship between the angular wavenumber k and and kinamatic variable V is

The force applied to small piston = 2.2 x 10³ N
<h3>Further explanation</h3>
Given
a radius of 5 cm and 15 cm
weight 20000 N
Required
Force applied
Solution
Pascal Law :
F₁/A₁=F₂/A₂
A₁ = π.5²
A₂ = π.15²
F₁/ π.5² cm² = 20000/π.15² cm²
F₁ = 2222.22 N⇒2.2 x 10³ N
Due to damming the water it will not flow as fast and since it wont flow as fast it will cause the water level to rise.
Answer:
The minimum speed required is 2.62m/s
Explanation:
The value of gravitational acceleration = g = 9.81 m/s^2
Radius of the vertical circle = R = 0.7 m
Given the mass of the pail of water = m
The speed at the highest point of the circle = V
The centripetal force will be needed must be more than the weight of the pail of water in order to not spill water.
Below is the calculation:




Answer: Your question is missing below is the question
Question : What is the no-friction needed speed (in m/s ) for these turns?
answer:
20.1 m/s
Explanation:
2.5 mile track
number of turns = 4
length of each turn = 0.25 mile
banked at 9 12'
<u>Determine the no-friction needed speed </u>
First step : calculate the value of R
2πR / 4 = πR / 2
note : πR / 2 = 0.25 mile
∴ R = ( 0.25 * 2 ) / π
= 0.159 mile ≈ 256 m
Finally no-friction needed speed
tan θ = v^2 / gR
∴ v^2 = gR * tan θ
v = √9.81 * 256 * tan(9.2°) = 20.1 m/s