Answer:
False
Explanation:
Mendel realized that the F2 had a phenotypic ratio 3:1, meaning 3/4 = 75% were yellow and 1/4 = 25% green.
Mendel observed that the F1 expressed only one of the alternative variants (in this case, only yellow seeds appeared), while the other variant (green) disappeared. Mendel named dominant the expressed variant. Mendel allowed auto pollination and observed that in the second generation, F2, the other disappeared variant reappeared. Both alternative variants were present in the F2. Mendel named recessive the second alternative variant.
Mendel thought that hereditary traits determined by discrete factors were the possible explication for these phenotypes. These factors should have been present in the F1 in pairs. One of them came from one parental plant, and the other factor came from the other plant. These factors then separated again when sex cells were produced, giving two types of gametes, each with only one factor.
Mendel concluded that each individual (plant) has a pair of factors (alleles), one for each trait (yellow and green) and that the pair separates (segregates) during the formation of the gametes. This conclusion is known as the segregation principle (First Mendels´ Low).
Answer:
The three processes from left to right are:
<u>Replication</u> DNA <u>Trancription</u> RNA <u>Translation</u> Protein
Explanation:
The process in question in the diagram is called the central dogma of life which describes the flow of genetic information from DNA to RNA to Protein. The three processes involved are:
- DNA Replication
- Transcription
- Translation
DNA Replication:
DNA replication is the process by which DNA makes a copy of itself. Replication of DNA is semi-conservative. this means that each new helix is a combination of an old (parent) strands and a new (daughter strand). The parental strand is used as a template to generate a complementary daughter strand.
Transcription:
Transcription is the formation of an RNA transcript of the DNA template. This process yields a mRNA that is further used as a code to manufacture proteins in the process of translation.
Translation:
Translation decodes the mRNA formed in transcription to generate proteins with specific amino acid sequence.
Answer:
A. The poles are opposite
Explanation:
Magnets are object that produce magnetic fields, which are regions of space that exert a forces on charged particles in motion or on other magnets.
Every magnet has 2 opposite poles, which are labelled by convention as North Pole and South Pole; the lines of the magnetic field of a magnet go out from the North Pole and go into the South Pole.
Magnetic poles always exist in pair: it means, every magnet always contains a North Pole and a South Pole. If a magnet is cut in a half, each half of the magnet will still have a North Pole and a South Pole.
Each pole exerts a force on another pole; in particular, we have:
- Like poles (north-north or south-south) repel each other
- Opposite poles (north-south) attract each other
In this problem, a magnet is attracted to a metal object: this means that the two poles must be of opposite polarity. Therefore, the correct option is
A. The poles are opposite
It should be translation.
Brown eyes + blue eyes = 50% chance of blue eyes, but only if the brown-eyed parent carries a blue-eyed gene. If not, the chance is 0% Brown eyes + brown eyes = 25%, but only if both parents carry the blue-eyed gene.
a 25% If both of you have brown eyes, then there is generally a 25% chance that the baby will have blue eyes if both of you carry the recessive blue-eye gene. But if only one of you has a recessive blue-eye gene, and the other has two brown, dominant genes, then there is a less than 1% chance of the baby having blue eyes.