In an inverse proportion two veriables are inversely proportional to each other.You can write the equation as P=n/x, and N is the constant of proportionality.In the equation the X increases and the P decreases.
You could use perturbation method to calculate this sum. Let's start from:

On the other hand, we have:

So from (1) and (2) we have:

Now, let's try to calculate sum

, but this time we use perturbation method.

but:
![S_{n+1}=\sum\limits_{k=0}^{n+1}k\cdot k!=0\cdot0!+\sum\limits_{k=1}^{n+1}k\cdot k!=0+\sum\limits_{k=0}^{n}(k+1)(k+1)!=\\\\\\= \sum\limits_{k=0}^{n}(k+1)(k+1)k!=\sum\limits_{k=0}^{n}(k^2+2k+1)k!=\\\\\\= \sum\limits_{k=0}^{n}\left[(k^2+1)k!+2k\cdot k!\right]=\sum\limits_{k=0}^{n}(k^2+1)k!+\sum\limits_{k=0}^n2k\cdot k!=\\\\\\=\sum\limits_{k=0}^{n}(k^2+1)k!+2\sum\limits_{k=0}^nk\cdot k!=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\\\\\\ \boxed{S_{n+1}=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n}](https://tex.z-dn.net/?f=S_%7Bn%2B1%7D%3D%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%2B1%7Dk%5Ccdot%20k%21%3D0%5Ccdot0%21%2B%5Csum%5Climits_%7Bk%3D1%7D%5E%7Bn%2B1%7Dk%5Ccdot%20k%21%3D0%2B%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%2B1%29%28k%2B1%29%21%3D%5C%5C%5C%5C%5C%5C%3D%0A%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%2B1%29%28k%2B1%29k%21%3D%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%5E2%2B2k%2B1%29k%21%3D%5C%5C%5C%5C%5C%5C%3D%0A%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%5Cleft%5B%28k%5E2%2B1%29k%21%2B2k%5Ccdot%20k%21%5Cright%5D%3D%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%5E2%2B1%29k%21%2B%5Csum%5Climits_%7Bk%3D0%7D%5En2k%5Ccdot%20k%21%3D%5C%5C%5C%5C%5C%5C%3D%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%5E2%2B1%29k%21%2B2%5Csum%5Climits_%7Bk%3D0%7D%5Enk%5Ccdot%20k%21%3D%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%5E2%2B1%29k%21%2B2S_n%5C%5C%5C%5C%5C%5C%0A%5Cboxed%7BS_%7Bn%2B1%7D%3D%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%5E2%2B1%29k%21%2B2S_n%7D)
When we join both equation there will be:
![\begin{cases}S_{n+1}=S_n+(n+1)(n+1)!\\\\S_{n+1}=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\end{cases}\\\\\\ S_n+(n+1)(n+1)!=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\\\\\\\\ \sum\limits_{k=0}^{n}(k^2+1)k!=S_n-2S_n+(n+1)(n+1)!=(n+1)(n+1)!-S_n=\\\\\\= (n+1)(n+1)!-\sum\limits_{k=0}^nk\cdot k!\stackrel{(\star)}{=}(n+1)(n+1)!-[(n+1)!-1]=\\\\\\=(n+1)(n+1)!-(n+1)!+1=(n+1)!\cdot[n+1-1]+1=\\\\\\= n(n+1)!+1](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7DS_%7Bn%2B1%7D%3DS_n%2B%28n%2B1%29%28n%2B1%29%21%5C%5C%5C%5CS_%7Bn%2B1%7D%3D%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%5E2%2B1%29k%21%2B2S_n%5Cend%7Bcases%7D%5C%5C%5C%5C%5C%5C%0AS_n%2B%28n%2B1%29%28n%2B1%29%21%3D%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%5E2%2B1%29k%21%2B2S_n%5C%5C%5C%5C%5C%5C%5C%5C%0A%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%5E2%2B1%29k%21%3DS_n-2S_n%2B%28n%2B1%29%28n%2B1%29%21%3D%28n%2B1%29%28n%2B1%29%21-S_n%3D%5C%5C%5C%5C%5C%5C%3D%0A%28n%2B1%29%28n%2B1%29%21-%5Csum%5Climits_%7Bk%3D0%7D%5Enk%5Ccdot%20k%21%5Cstackrel%7B%28%5Cstar%29%7D%7B%3D%7D%28n%2B1%29%28n%2B1%29%21-%5B%28n%2B1%29%21-1%5D%3D%5C%5C%5C%5C%5C%5C%3D%28n%2B1%29%28n%2B1%29%21-%28n%2B1%29%21%2B1%3D%28n%2B1%29%21%5Ccdot%5Bn%2B1-1%5D%2B1%3D%5C%5C%5C%5C%5C%5C%3D%0An%28n%2B1%29%21%2B1)
So the answer is:

Sorry for my bad english, but i hope it won't be a big problem :)
Answer:
450 people paid the discounted fare and 750 people paid the regular fare.
Step-by-step explanation:
let r be regular fares paid and d be discounted fares paid
Total fares = 0.8r + 0.4d = 780
Since 1200 people paid the fares,
r + d = 1200 = Total people
Rearrange this formula:
r = 1200 - d
Substitute r into Total Fares formula
Total fares = 0.8r + 0.4d
780 = 0.8(1200-d) + 0.4d
780 = 960 - 0.8d + 0.4d
780 = 960 - 0.4d
0.4d = 180
d = 450
Sub d=450 into Total people formula
r + d = 1200 = Total people
r + 450 = 1200
r = 1200-450
r = 750
450 people paid the discounted fare and 750 people paid the regular fare.
I can't read that language but I'll guess it says write a second degree equation then solve for n when d=10.



Answer: n² - 3n - 20 = 0
That doesn't factor so there is no integer n solution.
That means there are no polygons with 10 diagonals.

Answer:
<em>i: </em>x=-2, x=1
<em>ii: </em>x=-1/2
Step-by-step explanation:
Quadratic form:
You solve <em>i </em>by using FOIL (First, Outside, Inside, Last) because it is a multiplication problem.

<em>"first"</em> would be
, which would equal 
<em>"outside"</em> would be
, which would equal 
<em>"inside"</em> would be
, which would equal 
<em>"last" </em>would be
, which would equal 
Now you need to combine the terms so that they are one after the other

Combine like terms, and you should get:

i Solution
<em>You need to get the variable by itself.</em>
<em>Subtract two from both sides</em>

<em>Add one to both sides.</em>

ii Solution
<em>Add all the terms.</em>
