The answer is 5c^10__________
Answer:
29.2
Step-by-step explanation:
Mean = 21.4
Standard deviation = 5.9%
The minimum score required for the scholarship which is the scores of the top 9% is calculated using the Z - Score Formula.
The Z- score formula is given as:
z = x - μ /σ
Z score ( z) is determined by checking the z score percentile of the normal distribution
In the question we are told that it is the students who scores are in the top 9%
The top 9% is determined by finding the z score of the 91st percentile on the normal distribution
z score of the 91st percentile = 1.341
Using the formula
z = x - μ /σ
Where
z = z score of the 91st percentile = 1.341
μ = mean = 21.4
σ = Standard deviation = 5.9
1.341= x - 21.4 / 5.9
Cross multiply
1.341 × 5.9 = x - 21.4
7.7526 = x -21.4
x = 7.7526 + 21.4
x = 29.1526
The 91st percentile is at the score of 29.1526.
We were asked in the question to round up to the nearest tenth.
Approximately, = 29.2
Step-by-step explanation:
Answer:
(a) 3d=81
(b) 27
Step-by-step explanation:
every day, kojo write 3 pages
number of days he has written his story= d days
therefore number of pages he has written= 3d
from the final sentence,
3d= 81
<h3>(a) the equation to describe the situation: </h3><h3>3d= 81</h3>
(b) number of days kojo has been writing his story
3d= 81
dividing through by d
3d/3= 81/3
d = 27
<h3>therefore number of days = 27</h3>
Answer:
-$2.63
Step-by-step explanation:
Calculation for the expected profit for one spin of the roulette wheel with this bet
Based on the information given you bet $50 on 00 while the standard roulette has 38 possible outcomes which means that the probability or likelihood of getting 00 will be 1/38.
Therefore when we get an 00, we would get the amount of $1,750 with a probability of 1/38 and in a situation where were we get something other than 00 this means we would lose $50 with a probability of 37/38.
Now let find the Expected profit using this formula
Expected profit = sum(probability*value) -sum(probability*value)
Let plug in the formula
Expected profit =($1,750 * 1/38) - ($50 * 37/38)
Expected profit=($1,750*0.026315)-($50×0.973684)
Expected profit= 46.05 - 48.68
Expected profit = - $2.63
Therefore the expected profit for one spin of the roulette wheel with this bet will be -$2.63