Answer:
Step-by-step explanation:
Note that there are two scale models with each of ratio of 1/2 and 1/16 respectively.
For the first model, the dimension will be as follows:
Length/2 by width/2
94/2 by 50/2 = 47 feet by 25 feet.
For the second model, the dimension will be as follows:
Length/16 by width/16
The dimensions of the second model is 94/16 by 50/16 = 5.875 feet by 3.125 feet.
Since we are to solve for the area of the smallest scale model which is
5.875 feet by 3.125 feet.
Hence, area (A) = L× W
=5.875 × 3.125 feet.
= 18.359ft^2
Answer:
9) 1/48
11) 1/24
13) 5/16
14) 1/8
Step-by-step explanation:
9) P(A and 5) = 1/8 × 1/6
11) P(J and LT 3) = 1/8 x 2/6
13) P (consonant and odd) = 5/8 x 1/2
14) P ('M' or 'T' and GT 3) = [(1/8+1/8) × 1/2] = 2/8 x 1/2
Option A
Answered by GauthMath if you like please click thanks and comment thanks
Answer:
1st picture: (0,4)
The lines intersect at point (0,4).
2nd picture: Graph D
2x ≥ y - 1
2x - 5y ≤ 10
Set these inequalities up in standard form.
y ≤ 2x + 1
-5y ≤ 10 - 2x → y ≥ -2 + 2/5x → y ≥ 2/5x - 2
When you divide by a negative number, you switch the inequality sign.
Now you have:
y ≤ 2x + 1
y ≥ 2/5x - 2
Looking at the graphs, you first want to find the lines that intersect the y-axis at (0, 1) and (0, -2).
In this case, it is all of them.
Next, you would look at the shaded regions.
The first inequality says the values are less than or equal to. So you look for a shaded region below a line. The second inequality says the values are greater than or equal to. So you look for a shaded region above a line.
That would mean Graph B or D.
Then you look at the specific lines. You can see that the lower line is y ≥ 2/5x - 2. You need a shaded region above this line. You can see the above line is y ≤ 2x + 1. You need a shaded region below this line. That is Graph D.