Answer:
B
Step-by-step explanation:
cos(a) is AC/AB and sin(B) is AC/AB
Answer: B, C, E
-------
The difference between consecutive terms (numbers that come after each other) in arithmetic sequences is the same. That means you add the same number every time to get the next number. To figure out which choices are arithmetic sequences, just see if the differences are the same.
Choice A) 1, -2, 3, -4, 5, ...
-2 - 1 = -3
3 - (-2) = 5
The difference is not constant, so it is not an arithmetic sequence.
Choice B) 12,345, 12,346, 12,347, 12,348, 12,349, ...
12,346 - 12,345 = 1
12,347 - 12,346 = 1
The difference is constant, so it is an arithmetic sequence.
Choice C) <span>154, 171, 188, 205, 222, ...
171 - 154 = 17
188 - 171 = 17
The difference is constant, so it is an arithmetic sequence.
Choice D) </span><span>1, 8, 16, 24, 32, ...
8 - 1 = 7
16 - 8 = 8
</span>The difference is not constant, so it is not an arithmetic sequence.
Choice E) <span>-3, -10, -17, -24, -31, ...
-10 - (-3) = -7
-17 - (-10) = -7
</span>The difference is constant, so it is an arithmetic sequence.
Answer : The correct option is, (B) 1500 cubic yards.
Step-by-step explanation :
Formula used to calculate the volume of square pyramid is:

where,
V = volume of pyramid
a = base edge of pyramid
h = height of pyramid
Given:
Base edge of pyramid = 15 yards
Height of pyramid = 20 yards
Now putting all the given values in the above formula, we get:



Therefore, the volume of pyramid is 1500 cubic yards.
The function "choose k from n", nCk, is defined as
nCk = n!/(k!*(n-k)!) . . . . . where "!" indicates the factorial
a) No position sensitivity.
The number of possibilities is the number of ways you can choose 5 players from a roster of 12.
12C5 = 12*11*10*9*8/(5*4*3*2*1) = 792
You can put 792 different teams on the floor.
b) 1 of 2 centers, 2 of 5 guards, 2 of 5 forwards.
The number of possibilities is the product of the number of ways, for each position, you can choose the required number of players from those capable of playing the position.
(2C1)*(5C2)*(5C2) = 2*10*10 = 200
You can put 200 different teams on the floor.
Answer:
28
Step-by-step explanation:

O sino:
