So we need to know the likelihood for each sum. the first sum is 2, and there is no way for one of the die to equal 6 if the sum is 2, therefore the probability is 0. The same applies when the sum is 3, 4, 5, and 6. Once the sum gets to 7, you must evaluate all possible options. For 7, your options are 1&6, 2&5, 3&4, 4&3, 5&2, 6&1, where the number before the ampersand is the first die, and the number after is the second. there is only one option of the 6 choices where the first die is 6, therefore the probability is 1/6. For 8, the options are 2&6, 3&5, 4&4, 5&3, 6&2. so of the 5 choices, there is only one option, therefore the probability is 1/5. For 9, the choices are 3&6, 4&5, 5&4, 6&3. So of the 4 choices, there is 1 option, therefore the probability is 1/4. For 10, the options are 4&6, 5&5, 6&4. Of the 3 choices, there is 1 option, therefore the probability is 1/3. For 11, the options are 5&6, 6&5. Of the 2 choices, there is 1 option, therefore the probability is 1/2. Finally, for 12, the only option is 6&6. There is only one choice, so the probability is 1.
First, it is important to know that the scale factor is defined as a ratio of two corresponding side lengths of similar figures.
Similar figures are defined as those figures in which the ratio of their corresponfing side lengths are equal and their corresponding angles are congruent (which means that they have the same measure).
In this case, you know that the rectangles given in the picture are similar.
Therefore, you can find the scale factor that was applied to the first rectangle to get the resulting image, dividing the lenghts of their corresponding sides.