1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frez [133]
4 years ago
5

the number of words x tina can type per minute is at least 50. write and graph an inequality to describe this situation

Mathematics
2 answers:
IgorLugansk [536]4 years ago
5 0

Answer:-x≥50


Explanation:-

In algebra, an inequality is a relation that stack between two values when they are different. Notations for inequality are ≠,<,>,≤ and≥.

Given: The number of words Tine type per minute be x.

We know that the notation for 'at least' is ≥, thus

Inequality for the given situation is x≥50,which means she can write more than or equal to 50 words per minute.

In the graph we can see shaded part which represents number of words type more than or equal to 50.


marshall27 [118]4 years ago
3 0
I can only write a inequality here but here goes...
since she can atleast type 50 per minute that means the equation would be x >50 (you would also put the line under the > because it can equal it) (x is the amount she can type)
You might be interested in
The ideal width of a safety belt strap for a certain automobile is 6 cm. The actual width can vary by at most 0.45 cm. Write an
OlgaM077 [116]

Answer:

|x-6|\le 0.45

x\in [5.55,6.45]

Step-by-step explanation:

<u>Absolute Value Inequality</u>

Assume the actual width of a safety belt strap for a certain automobile is x. We know the ideal width of the strap is 6 cm. This means the variation from the ideal width is x-6.

Note if x is less than 6, then the variation is negative. We usually don't care about the sign of the variation, just the number. That is why we need to use the absolute value function.

The variation (unsigned) from the ideal width is:

|x-6|

The question requires that the variation is at most 0.45 cm. That poses the inequality:

|x-6|\le 0.45

That is the range of acceptable widths. Let's now solve the inequality.

To solve an inequality for an absolute value less than a positive number N, we write:

-0.45\le x-6 \le 0.45

This is a double inequality than can be easily solved by adding 6 to all the sides.

-0.45+6\le x \le 0.45+6

Operating:

5.55\le x \le 6.45

That is the solution in inequality form. Expressing in interval form:

\boxed{x\in [5.55,6.45]}

3 0
4 years ago
Find the area of the region enclosed by the graphs of these equations. (CALCULUS HELP)
sergiy2304 [10]

Answer:

\displaystyle A = \frac{20\sqrt{15}}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  1. Multiplication Property of Equality
  2. Division Property of Equality
  3. Addition Property of Equality
  4. Subtraction Property of Equality

<u>Algebra I</u>

  • Terms/Coefficients
  • Graphing
  • Exponential Rule [Root Rewrite]:                                                                   \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Area - Integrals

U-Substitution

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

F: y = √(15 - x)

G: y = √(15 - 3x)

H: y = 0

<u>Step 2: Find Bounds of Integration</u>

<em>Solve each equation for the x-value for our bounds of integration.</em>

F

  1. Set <em>y</em> = 0:                                                                                                         0 = √(15 - x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 15

G

  1. Set y = 0:                                                                                                         0 = √(15 - 3x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - 3x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -3x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 5

This tells us that our bounds of integration for function F is from 0 to 15 and our bounds of integration for function G is 0 to 5.

We see that we need to subtract function G from function F to get our area of the region (See attachment graph for visual).

<u>Step 3: Find Area of Region</u>

<em>Integration Part 1</em>

  1. Rewrite Area of Region Formula [Integration Property - Subtraction]:     \displaystyle A = \int\limits^b_a {f(x)} \, dx - \int\limits^d_c {g(x)} \, dx
  2. [Integral] Substitute in variables and limits [Area of Region Formula]:     \displaystyle A = \int\limits^{15}_0 {\sqrt{15 - x}} \, dx - \int\limits^5_0 {\sqrt{15 - 3x}} \, dx
  3. [Area] [Integral] Rewrite [Exponential Rule - Root Rewrite]:                       \displaystyle A = \int\limits^{15}_0 {(15 - x)^{\frac{1}{2}}} \, dx - \int\limits^5_0 {(15 - 3x)^{\frac{1}{2}}} \, dx

<u>Step 4: Identify Variables</u>

<em>Set variables for u-substitution for both integrals.</em>

Integral 1:

u = 15 - x

du = -dx

Integral 2:

z = 15 - 3x

dz = -3dx

<u>Step 5: Find Area of Region</u>

<em>Integration Part 2</em>

  1. [Area] Rewrite [Integration Property - Multiplied Constant]:                       \displaystyle A = -\int\limits^{15}_0 {-(15 - x)^{\frac{1}{2}}} \, dx + \frac{1}{3}\int\limits^5_0 {-3(15 - 3x)^{\frac{1}{2}}} \, dx
  2. [Area] U-Substitution:                                                                                   \displaystyle A = -\int\limits^0_{15} {u^{\frac{1}{2}}} \, du + \frac{1}{3}\int\limits^0_{15} {z^{\frac{1}{2}}} \, dz
  3. [Area] Reverse Power Rule:                                                                         \displaystyle A = -(\frac{2u^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15} + \frac{1}{3}(\frac{2z^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15}
  4. [Area] Evaluate [Integration Rule - FTC 1]:                                                   \displaystyle A = -(-10\sqrt{15}) + \frac{1}{3}(-10\sqrt{15})
  5. [Area] Multiply:                                                                                               \displaystyle A = 10\sqrt{15} + \frac{-10\sqrt{15}}{3}
  6. [Area] Add:                                                                                                     \displaystyle A = \frac{20\sqrt{15}}{3}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Area Under the Curve - Area of a Region (Integration)

Book: College Calculus 10e

3 0
3 years ago
The density of a certain material is such that it weighs 4 kilograms for every 9 cups of volume. Express this density in ounces
kobusy [5.1K]

Answer:

Me get free pointsssssssss

6 0
3 years ago
What is 1 and four quarters
alexira [117]
\text {1 and four quarter = } 1 \dfrac{4}{4}
5 0
3 years ago
Read 2 more answers
Mr.Bhal has a circular wading pool with a radius of 3.5 feet. He bought a larger pool witha diameter of 21 feet. The measurement
marishachu [46]

Answer: i think c

Step-by-step explanation:

7 0
3 years ago
Other questions:
  • How do we name a minor arc?
    15·1 answer
  • 0.135 repeated as a fraction is 5/37, 27/100, 27/200
    11·2 answers
  • If a cube has a surface area of 384 in what is its volume?
    11·1 answer
  • Help me please (NO LINKS)<br> Answer all please
    11·2 answers
  • Simplify <br> 4(1 + 9x) thank you
    10·1 answer
  • You may remember that the perimeter of a rectangle is P=2(W+L) where W is the width and L is the length. Suppose that the perime
    15·1 answer
  • PLEASE HELP ME!! Math
    11·1 answer
  • Study buddies? new friends?
    12·1 answer
  • The diagram shows a triangle.<br><br> What is the value of b?<br> 37<br> 143<br> 90<br> 30
    13·2 answers
  • 1.1 How many grams of can of apple pie filling Chantel is going to use in the Apple (2) Cinnamon Cake.​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!