Answer:
x should be 1
I think if you substitute it will just be the index 2 that remains , not sure though .You should probably ask your teacher for assistance
Answer:
2
Step-by-step explanation:
Given g(x) = sin(x)-1/cos2(x), we are to find the limit if the function g(x) as g(x) tends to π/2
Substituting π/2 into the function
lim x-->π/2 sin(x)-1/cos 2(x)
= sin(π/2) - 1/cos(2)(π/2)
= 1 - 1/cosπ
= 1- 1/-1
= 1 -(-1)
= 1+1
= 2
Hence the limit of the function h(x) = sin(x)-1/cos2(x) as x--> π/2 is 2
Answer:
30 inches
Step-by-step explanation:
Answer:

Step-by-step explanation:
Have in mind the definition of the term
, and now work on what the term
is based on the previous definition:

In the next step do NOT combine the numerical values, but try to identify the
term (
) in the expression (notice the use of square brackets to group the relevant terms):
![a_{n+1}=4\,n+4-1\\a_{n+1}=[4\,n-1]+4\\a_{n+1}=a_n+4](https://tex.z-dn.net/?f=a_%7Bn%2B1%7D%3D4%5C%2Cn%2B4-1%5C%5Ca_%7Bn%2B1%7D%3D%5B4%5C%2Cn-1%5D%2B4%5C%5Ca_%7Bn%2B1%7D%3Da_n%2B4)
So now we have the term "
" defined in a recursive manner based on the previous term "
"