<span>continental rise... honest answer
</span>
option(c)Location E, because Earth's axis is tilted towards the sun is the right answer.
When location e is located at the tropic of cancer, while location f is at the equator, Location E, because Earth's axis is tilted towards the sun is likely to be warmer at the start of the summer in June.
Because Earth's axis is tilted towards the sun, place E is expected to be warmer during the beginning of summer in June.
<h3>What is Earth?</h3>
The only present astronomical object to have life on it would be the Earth because its optimum distance of planet to the sun.
<h3>What is sun?</h3>
- Even the planets would rotate around the sun, which would be at the center of the earth.
- Experts claim that the sun is simply a mass of hot plasma with a spherical appearance.
- The sun warmed the northern hemisphere of the planet.
- Summer in the northern hemisphere is characterized by extended daylight hours, the sun rising straight overhead, and even more direct sunrays hitting the earth.
- The north pole is constantly illuminated.
Therefore, the correct answer will be option (C).
To learn more about earth visit:
brainly.com/question/17376727
#SPJ4
Answer:
R = 0 and no population growth.
Explanation:
Birth rate may be defined as the growth of individual per thousand and death rate determines the death of individual per thousand in a year. The birth and death changes the population dynamics.
The growth rate depends on both the factors that are birth rate and death rate. Here, the birth rate is balanced or equal that replace the offspring father. The change in the population growth is same and the birth and replacement almost cancel out each other. In this case, the birth rate is zero and population do not grow.
Thus, the answer is R = 0 and no population growth.
© 1998, 1999 Gregory Carey Chapter 7: The New Genetics - 1 Chapter 7: The New Genetics—Techniques for DNA Analysis Introduction Before the 1980s, finding the genotype of an individual usually involved various laboratory assays for a gene product—the protein or enzyme. The cases of the ABO and Rhesus blood groups are classic examples of how one infers genotypes from the reaction of gene products with certain chemicals. In the mid 1980s, genetic technology took a great leap forward with the ability to genotype the DNA itself. The geneticist could now examine the DNA directly without going through the laborious process of developing assays to detect individual differences in proteins and enzymes. Direct DNA analysis had the further advantage of being able to identify alleles in sections of DNA that did not code for polypeptide chains. As a result of these new advances, the number of genetic loci that could be detected increased exponentially and soon led to the identification of the genes for disorders that had remained a mystery for the better part of this century. In this chapter, the major molecular techniques are outlined. The purpose is to provide a quick and understandable reference for the social scientist. The content of this chapter is not something that is required to understand genetics, what genes are, or how they relate to human behavior. Indeed, this chapter may be skipped without any great loss of continuity. Hence, only the essentials are given and the reader interested in the laboratory science behind the techniques is referred to contemporary textbooks on molecular genetics. We begin by defining a series of basic tools and techniques. © 1998, 1999 Gregory Carey Chapter 7: The New Genetics - 2 Basic Tools and Techniques: Basic tools: Electrophoresis Electrophoresis is a technique that separates small biological molecules by their molecular weight. It may be applied to molecules as large as proteins and enzymes as well as to small snippets of DNA and RNA. One begins the procedure by constructing a “gel”—a highly viscous material the actual chemistry of which need not concern us. Purified copies of the biological specimen are then injected into a “starting lane” at one end of the gel. Finally, a weak electric current is passed through the gel for a specified amount of time. Gravity and the electric current cause the biological molecules to migrate to the opposite end of the gel. The extent to which any molecule moves depends upon its electrical charge, molecular weight, the viscosity of the gel, the strength of the current, and the amA. The simplest method to denature DNA is to h33///////////////////////(http://psych.colorado.edu/~carey/hgss/hgsschapters/HGSS_Chapter07.pdf) # cited