The force of attraction between two objects can be illustrated using Newton's Law of Universal Gravitation.
The relation between the different parameters is shown in the attached image.
Now, from the relation, we can deduce that the force between the two objects is directly proportional to the masses of the two objects.
This means that, if the mass of one object is doubled, then the force between the two objects will also be doubled.
A sound wave leaves the loudspeaker. As it travels, it experiences a temporary increase in wavelength and then returns to its original wavelength. The sound wave traveled through a helium balloon (helium is less dense than air could explain this change in wavelength
The pattern of disruption brought on by energy moving away from the sound source is known as a sound wave. Longitudinal waves are what makeup sound. This indicates that the direction of energy wave propagation and particle vibrational propagation are parallel. The atoms oscillate when they are put into vibration.
A high-pressure and a low-pressure zone are created in the medium as a result of this constant back and forth action. Compressions and rarefactions, respectively, are terms used to describe these high- and low-pressure zones. The sound waves go from one medium to another as a result of these regions being transmitted to the surrounding media.
To learn more about sound waves please visit -
brainly.com/question/11797560
#SPJ1
Answer:
44.1 m
Explanation:
<u>Given:</u>
= speed of sound in air = 343 m/s
= speed of sound in the rod = 
= times interval between the hearing the sound twice = 0.12 s
<u>Assumptions:</u>
= length of the rod
= time taken by the sound to travel through the rod
= time taken by the sound to travel to through air to the same point = 
We know that the distance traveled by the sound in a particular medium is equal to the product of the speed of sound in that medium and the time taken.
For traveling sound through the rod, we have
..........eqn(1)
For traveling sound through the air to the women ear for traveling the same distance, we have

Hence, the length of the rod is 44.1 m.
Answer:
The solved problem is in the photo. Hope it helps.