The answer for <span>electromagnetic radiation released during radioactive decay i</span>s C. He
It'll be my pleasure to analyze the circuit, describe my analysis in detail,
and give you a clear, precise, and accurate answer.
As soon as you let me see the circuit diagram, with values marked on
all of its components and power sources.
Answer:

Explanation:
<u>Frictional Force
</u>
When the car is moving along the curve, it receives a force that tries to take it from the road. It's called centripetal force and the formula to compute it is:

The centripetal acceleration a_c is computed as

Where v is the tangent speed of the car and r is the radius of curvature. Replacing the formula into the first one

For the car to keep on the track, the friction must have the exact same value of the centripetal force and balance the forces. The friction force is computed as

The normal force N is equal to the weight of the car, thus

Equating both forces

Simplifying

Substituting the values


L = r x p = rmv = mr²ω
L = 0.25 x 0.75² x 12.5 = 1.758
Answer:
e. The net magnetic flux in this case would be equal to zero.
Explanation:
As per Gauss law of magnetism we need to find the net magnetic flux through a closed loop
here we know that net magnetic flux is the scalar product of magnetic field vector and area vector
so here we have
= net magnetic flux
since we know that magnetic field always forms closed loop so if we find the integral over a closed loop
then in that case the value of the close integral must be zero
so correct answer would be
e. The net magnetic flux in this case would be equal to zero.