Answer: The right answer is b)
Explanation:
By definition, acceleration is the change in velocity (in module or direction) over a given time interval, as follows:
a = (v-v₀) / (t-t₀)
If we take t₀ = 0 (this is completely arbitrary), we can rewrite the equation above, as follows:
v = v₀ + at
We can recognize this function as a linear one, where a represents the slope of the line.
If a is constant, this means that the relationship between the change in velocity and the change in time remains constant, in other words, in equal times, its velocity changes in an equal amount.
Let's suppose that a = 10 m/s/s. (Usually written as 10 m/s²).
This is telling us that each second, the velocity increases 10 m/s.
Gravitational potential energy can be calculated using the formula:

Where:
PEgrav = Gravitational potential energy
m= mass
g = acceleration due to gravity
h = height
On Earth acceleration due to gravity is a constant 9.8 but since the scenario is on Mars, the pull of gravity is different. In this case, it is 3.7, so we will use that for g.
So put in what you know and solve for what you don't know.
m = 10kg
g = 3.7m/s^2
h = 1m
So we put that in and solve it.


The answer is C. I just took the test.
I hope this helps. :)
<h2>
Answer:</h2>
<h2>3m</h2>
<h3>The wavelength of 100-MHz radio waves is 3 m, yet using the sensitivity of the resonant frequency to the magnetic field strength, details smaller than a millimeter can be imaged.</h3>
<h2>Hope this helps you ❤️</h2>
<h2>MaRk mE aS braiNliest ❤️</h2>
n₂ = index of refraction of glass = 1.58
n₁ = index of refraction of air = 1
θ = Brewster's angle
Brewster's angle is that incident angle at which the the reflected light from the interface of two medium is completely polarized.
Brewster's angle is given as
θ = tan⁻¹(n₂ /n₁ )
θ = tan⁻¹(1.58/1 )
θ = 57.7 deg
hence the Brewster's angle comes out to be 57.7 deg