Answer:
![\huge\boxed{\sqrt[3]{c^4}=c^\frac{4}{3}}](https://tex.z-dn.net/?f=%5Chuge%5Cboxed%7B%5Csqrt%5B3%5D%7Bc%5E4%7D%3Dc%5E%5Cfrac%7B4%7D%7B3%7D%7D)
Step-by-step explanation:
![\sqrt[n]{a^m}=a^\frac{m}{n}\\\\\text{therefore}\\\\\sqrt[3]{c^4}=c^\frac{4}{3}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%5Em%7D%3Da%5E%5Cfrac%7Bm%7D%7Bn%7D%5C%5C%5C%5C%5Ctext%7Btherefore%7D%5C%5C%5C%5C%5Csqrt%5B3%5D%7Bc%5E4%7D%3Dc%5E%5Cfrac%7B4%7D%7B3%7D)
The total amount of the resulting mixture can be calculated by adding up the volume of the given substances assuming that volume addition is applicable given the properties of the fluids used.
That is,
T = 6 quarts + 10 quarts = 16 quarts
The total volume of the resulting mixture is 16.
Then, we do the component (antifreeze) balance by adding up the resulting antifreeze from the substances to the total. We let x be the percentage of antifreeze in the final mixture.
6(0.52) + 10(0.32) = 16(x)
The value of x from the equation is 0.395.
Therefore, the answer to this item is 39.5%.
Answer:
a)0.08 , b)0.4 , C) i)0.84 , ii)0.56
Step-by-step explanation:
Given data
P(A) = professor arrives on time
P(A) = 0.8
P(B) = Student aarive on time
P(B) = 0.6
According to the question A & B are Independent
P(A∩B) = P(A) . P(B)
Therefore
&
is also independent
= 1-0.8 = 0.2
= 1-0.6 = 0.4
part a)
Probability of both student and the professor are late
P(A'∩B') = P(A') . P(B') (only for independent cases)
= 0.2 x 0.4
= 0.08
Part b)
The probability that the student is late given that the professor is on time
=
=
= 0.4
Part c)
Assume the events are not independent
Given Data
P
= 0.4
=
= 0.4

= 0.4 x P
= 0.4 x 0.4 = 0.16
= 0.16
i)
The probability that at least one of them is on time
= 1-
= 1 - 0.16 = 0.84
ii)The probability that they are both on time
P
= 1 -
= 1 - ![[P({A}')+P({B}') - P({A}'\cap {B}')]](https://tex.z-dn.net/?f=%5BP%28%7BA%7D%27%29%2BP%28%7BB%7D%27%29%20-%20P%28%7BA%7D%27%5Ccap%20%7BB%7D%27%29%5D)
= 1 - [0.2+0.4-0.16] = 1-0.44 = 0.56
The 3 in "513" is only 3. it's 1, 2, 3. If we do 3 x 10 it's 30