1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
allochka39001 [22]
4 years ago
6

Which two equations would be most appropriately solved by using the zero product property? Select each correct answer.

Mathematics
2 answers:
rusak2 [61]4 years ago
7 0

Anwser: 2x² + 6x = 0 and (x−3)(x+4)=0

LekaFEV [45]4 years ago
3 0
The zero product property tells us that if the product of two or more factors is zero, then each one of these factors CAN be zero.

For more context let's look at the first equation in the problem that we can apply this to: (x-3)(x+4)=0

Through zero property we know that the factor (x-3) can be equal to zero as well as (x+4). This is because, even if only one of them is zero, the product will immediately be zero.

The zero product property is best applied to factorable quadratic equations in this case.

Another factorable equation would be 2x^{2}+6x=0 since we can factor out 2x and end up with 2x(x+3)=0. Now we'll end up with two factors, 2x and (x+3), which we can apply the zero product property to.

The rest of the options are not factorable thus the zero product property won't apply to them.
You might be interested in
The triangle inequality
klemol [59]
The answer is the first choice: 7, 15, 20.
When you want to know what three numbers can make up a triangle. All you have to do is take the first two numbers and add them up. If the sum is larger than the third number, it can form a triangle. If the sum of the first two numbers are smaller than the third number, it cannot form a triangle.
Hope this helped
3 0
3 years ago
Solve. u+6 = 18<br> a. 3<br> b. 12<br> c. 24<br> d. 108
Gekata [30.6K]
u+6=18\\&#10;u=12
4 0
3 years ago
Match each function with the corresponding function formula when h(x)=5-3x and g(x)=-3+5
Grace [21]

Answer:

k(x) = (3g + 5h)(x) ⇒ (1)

k(x) = (5h - 3g)(x) ⇒ (3)

k(x) = (h - g)(x) ⇒ (2)

k(x) = (g + h)(x) ⇒ (4)

k(x) = (5g + 3h)(x) ⇒ (5)

k(x) = (3h - 5g)(x) ⇒ (6)

Step-by-step explanation:

* To solve this problem we will substitute h(x) and g(x) in k(x) in the

  right column to find the corresponding function formula in the

  left column

∵ h(x) = 5 - 3x

∵ g(x) = -3^x + 5

- Lets start with the right column

# k(x) = (3g + 5h)(x)

∵ g(x) = -3^x + 5

∵ 3g(x) = 3[-3^x + 5] = [3 × -3^x + 3 × 5]

- Lets simplify 3 × -3^x

 take the negative out -(3 × 3^x), and use the rule a^n × a^m = a^(n+m)

∴ -3(3 × 3^x) = -(3^x+1)

∴ 3g(x) = -3^x+1 + 15

∵ h(x) = 5 - 3x

∵ 5h(x) = 5[5 - 3x] = [5 × 5 - 5 × 3x] = 25 - 15x

- Now substitute 3g(x) and 5h(x) in k(x)

∵ k(x) = (3g + 5h)(x)

∴ k(x) = -3^x+1 + 15 + 25 - 15x ⇒ simplify

∴ k(x) = 40 - 3^x+1 - 15x

∴ k(x) = 40 - 3^x+1 - 15x ⇒ k(x) = (3g + 5h)(x)

* k(x) = (3g + 5h)(x) ⇒ (1)

# k(x) = (5h - 3g)(x)

∵ 5h(x) = 25 - 15x

∵ 3g(x) = -3^x+1 + 15

∵ k(x) = (5h - 3g)(x)

∴ k(x) = 25 - 15x - (-3^x+1 + 15) = 25 -15x + 3^x+1 - 15 ⇒ simplify

∴ k(x) = 10 + 3^x+1 - 15x

∴ k(x) = 10 + 3^x+1 - 15x ⇒ k(x) = (5h - 3g)(x)

* k(x) = (5h - 3g)(x) ⇒ (3)

# k(x) = (h - g)(x)

∵ h(x) = 5 - 3x

∵ g(x) = -3^x + 5

∵ k(x) = (h - g)(x)

∴ k(x) = 5 - 3x - (-3^x + 5) = 5 - 3x + 3^x - 5 ⇒ simplify

∴ k(x) = 3^x - 3x

∴ k(x)= 3^x - 3x ⇒ k(x) = (h - g)(x)

* k(x) = (h - g)(x) ⇒ (2)

# k(x) = (g + h)(x)

∵ h(x) = 5 - 3x

∵ g(x) = -3^x + 5

∵ k(x) = (g + h)(x)

∴ k(x) = -3^x + 5 + 5 - 3x ⇒ simplify

∴ k(x) = 10 - 3^x - 3x

∴ k(x)= 10 - 3^x - 3x ⇒ k(x) = (g + h)(x)

* k(x) = (g + h)(x) ⇒ (4)

# k(x) = (5g + 3h)(x)

∵ g(x) = -3^x + 5

∵ 5g(x) = 5[-3^x + 5] = [5 × -3^x + 5 × 5] = 5(-3^x) + 25

∴ 5g(x) = -5(3^x) + 25

∵ h(x) = 5 - 3x

∵ 3h(x) = 3[5 - 3x] = [3 × 5 - 3 × 3x] = 15 - 9x

- Now substitute 5g(x) and 3h(x) in k(x)

∵ k(x) = (5g + 3h)(x)

∴ k(x) = -5(3^x) + 25 + 15 - 9x ⇒ simplify

∴ k(x) = 40 - 5(3^x) - 9x

∴ k(x) = 40 - 5(3^x) - 9x ⇒ k(x) = (5g + 3h)(x)

* k(x) = (5g + 3h)(x) ⇒ (5)

# k(x) = (3h - 5g)(x)

∵ 3h(x) = 15 - 9x

∵ 5g(x) = -5(3^x) + 25

∵ k(x) = (3h - 5g)(x)

∴ k(x) = 15 - 9x - [-5(3^x) + 25] = 15 - 9x + 5(3^x) - 25 ⇒ simplify

∴ k(x) = 5(3^x) - 9x - 10

∴ k(x) = 5(3^x) - 9x - 10 ⇒ k(x) = (3h - 5g)(x)

* k(x) = (3h - 5g)(x) ⇒ (6)

4 0
3 years ago
WHATS THE MISSING SIDE PLEASE HURRY IM TIMED
svetoff [14.1K]

Answer: 6.40 = c

Step-by-step explanation:

a^2 + b^2 = c^2

5^2 + 4^2 = c^2

25 + 16 = c^2

41 = c^2

  ____

_/ 41  = c

6.40 = c

4 0
3 years ago
-8(6+X) + 4(2x + 7) = 0
Talja [164]

Answer:

-20 = 0

Step-by-step explanation:

-8 (6 + x) + 4 (2x + 7) = 0

-48 - 8x + 8x + 28 = 0

-20 = 0

3 0
3 years ago
Other questions:
  • Solve for k: A=5k/7y
    13·1 answer
  • 3/4 x3/4 an exponential form
    7·1 answer
  • What equal 4 kilograms
    7·2 answers
  • What is the sum of the coefficients of the expression 3x^4+5x^2+x?
    5·2 answers
  • A. 1/20 <br> B.1/60<br> C. 1/12 <br> D. 1/15
    7·1 answer
  • Find the slope between the<br> following points:<br> (11,-16) and (17,-9)
    6·1 answer
  • Can someone plz help me with my math test plz
    6·2 answers
  • Solve the two step equations
    14·1 answer
  • Solve for x <br> 2x+16 X+16
    14·2 answers
  • PLS HELP 30 PTS!!!Use the coordinate plane to help you identify the length of each leg then use the Pythagorean Theorem to find
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!