Exponential functions are related to logarithmic functions in that they are inverse functions. Exponential functions move quickly up towards a [y] infinity, bounded by a vertical asymptote (aka limit), whereas logarithmic functions start quick but then taper out towards an [x] infinity, bounded by a horizontal asymptote (aka limit).
If we use the natural logarithm (ln) as an example, the constant "e" is the base of ln, such that:
ln(x) = y, which is really stating that the base (assumed "e" even though not shown), that:

if we try to solve for y in this form it's nearly impossible, that's why we stick with ln(x) = y
but to find the inverse of the form:

switch the x and y, then solve for y:

So the exponential function is the inverse of the logarithmic one, f(x) = ln x
The sample is 200 randomly selected students.
The following things should be considered:
- Let us assume the no of siblings for each student be x.
- Now for determining the mean no of siblings she choose 200 students.
So, here the sample should be 200 randomly selected students.
Therefore the other options should be incorrect.
Thus we can conclude that the sample is 200 randomly selected students.
Learn more about the sample here: brainly.com/question/13287171
Answer:
The nth term of the geometric sequence 7, 14, 28, ... is:

Step-by-step explanation:
Given the geometric sequence
7, 14, 28, ...
We know that a geometric sequence has a constant ratio 'r' and is defined by

where a₁ is the first term and r is the common ratio
Computing the ratios of all the adjacent terms

The ratio of all the adjacent terms is the same and equal to

now substituting r = 2 and a₁ = 7 in the nth term


Therefore, the nth term of the geometric sequence 7, 14, 28, ... is:
